

(Accredited by NAAC with A+ Grade with a CGPA of 3.55 out of 4 in the 3rd cycle)

Gandhi Nagar, Vellore – 6.

DEPARTMENT OF CHEMISTRY LESSON PLAN 2018-2019

Dr.S.JHANCY MARY LESSON PLAN

2018-2019

ODD SEMESTER

PHYSICAL CHEMISTRY

III B.Sc. -Chemistry - 5 hours /week

Week	Topics	Reference Books
1	Chemical Kinetics: order and molecularity - Methods to determine the rate of the reactions-derivation of rate constants of I, II, III and zero order reactions and examples.	R. Puri, L. R Sharma and M.S Pathania, Principles of Physical Chemistry, 43 rd Edition, Vishal Publishing Co., 2008.
		Jainudeen, Chemical Kinetics and Photochemistry, 1 st Edition, Jazeeme publication, 1982.
2	Derivation for time for half change with examples- Methods to determine the order of reactions — Experimental methods in the study of kinetics of reactions- Volumetry, Manometry.	R. Puri, L. R Sharma and M.S Pathania, Principles of Physical Chemistry, 43 rd Edition, Vishal Publishing Co., 2008.
		Jainudeen, Chemical Kinetics and Photochemistry, 1 st Edition, Jazeeme publication, 1982.
3	Polarimetry, Dilatometry and Colorimetry Effect of temperature on the rate of reactions — Arrhenius equation and concept of energy of activation.	R. Puri, L. R Sharma and M.S Pathania, Principles of Physical Chemistry, 43 rd Edition, Vishal Publishing Co., 2008.
		Jainudeen, Chemical Kinetics and Photochemistry, 1 st Edition, Jazeeme publication, 1982.
4	Collision theory and derivation of rate constant for bimolecular reactions —Lindemann 's theory of unimolecular reactions.	R. Puri, L. R Sharma and M.S Pathania, Principles of Physical Chemistry, 43 rd Edition, Vishal Publishing Co., 2008.

		Jainudeen, Chemical Kinetics and Photochemistry, 1 st Edition, Jazeeme publication, 1982.
5	Theory of Absolute Reaction Rates- thermodynamic derivation for the rate constant for a bimolecular reaction from it-Comparison of Collision theory and ARRT-significance of entropy and free energy of activation.	R. Puri, L. R Sharma and M.S Pathania, Principles of Physical Chemistry, 43 rd Edition, Vishal Publishing Co., 2008. Jainudeen, Chemical Kinetics and Photochemistry, 1 st Edition, Jazeeme publication, 1982.
6	Complex reactions: types - consecutive, parallel and reversible reactions (no derivation, only examples).	R. Puri, L. R Sharma and M.S Pathania, Principles of Physical Chemistry, 43 rd Edition, Vishal Publishing Co., 2008. Jainudeen, Chemical Kinetics and Photochemistry, 1 st Edition, Jazeeme publication, 1982.
7	Photochemistry-laws of light absorption and laws of photochemistry-Jablonski diagram-Fluorescence and Phosphorescence.	R. Puri, L. R Sharma and M.S Pathania, Principles of Physical Chemistry, 43 rd Edition, Vishal Publishing Co., 2008. Jainudeen, Chemical Kinetics and Photochemistry, 1 st Edition, Jazeeme publication, 1982.
8	Primary and secondary reactions – quantum yield - Experimental determination, Eder's and Uranyl oxalate actinometers.	R. Puri, L. R Sharma and M.S Pathania, Principles of Physical Chemistry, 43 rd Edition, Vishal Publishing Co., 2008. Jainudeen, Chemical Kinetics and Photochemistry, 1 st Edition, Jazeeme publication, 1982.

9	Kinetics of Hydrogen – Bromine reaction, photolysis of aldehyde-photosensitization-Chemiluminescence. Lasers- uses of lasers.	R. Puri, L. R Sharma and M.S Pathania, Principles of Physical Chemistry, 43 rd Edition, Vishal Publishing Co., 2008.
		Jainudeen, Chemical Kinetics and Photochemistry, 1 st Edition, Jazeeme publication, 1982.
10	Phase equilibria – Gibbs phase rule –statement, definition of terms and derivation - applications to one component systems – Water and Sulphur systems.	R. Puri, L. R Sharma and M.S Pathania, Principles of Physical Chemistry, 43 rd Edition, Vishal Publishing Co., 2008.
		Gurtu, Phase Rule, 2 nd Edition, Pragathi Prakash Publications, 1972.
11	Thermal analysis and cooling curves – reduced phase rule - Two component system – lead silver system - freezing mixtures - compound formation with congruent melting point.	R. Puri, L. R Sharma and M.S Pathania, Principles of Physical Chemistry, 43 rd Edition, Vishal Publishing Co., 2008.
		Gurtu, Phase Rule, 2 nd Edition, Pragathi Prakash Publications, 1972.
12	Zn-Mg system, Ferric Chloride water system - incongruent melting point, Na-K system, CST and effect of impurity on Phenol – Water system.	R. Puri, L. R Sharma and M.S Pathania, Principles of Physical Chemistry, 43 rd Edition, Vishal Publishing Co., 2008.
		Gurtu, Phase Rule, 2 nd Edition, Pragathi Prakash Publications, 1972.
13	Catalysis-definition-homogeneous catalysis- function of a catalyst in terms of Gibbs free energy of activation. Heterogenous catalysis- Mechanisms of surface reactions.	R. Puri, L. R Sharma and M.S Pathania, Principles of Physical Chemistry, 43 rd Edition, Vishal Publishing Co., 2008.
14	Simple decompositions on surfaces -Kinetics of unimolecular surface reactions. Enzyme catalysis-Derivation of Michaelis Menton equation.	R. Puri, L. R Sharma and M.S Pathania, Principles of Physical

		Chemistry, 43 rd Edition, Vishal Publishing Co., 2008.
15	Adsorption - physisorption and chemisorption - Freundlich adsorption isotherm - Langmuir adsorption isotherm - BET equation (no derivation) - applications of adsorption.	R. Puri, L. R Sharma and M.S Pathania, Principles of Physical Chemistry, 43 rd Edition, Vishal Publishing Co., 2008.

I M.Sc. 1 hour/week KINETICS AND PHOTO CHEMISTRY

S.No	Topics	Reference Books
1	Partition functions and activated complex-Eyring	Chemical Kinetics by Laidler
	equation	Kinetics
		Kinetics and Mechanisms of
		Chemical Transformations by
		J.Rajaram J.C. Kuriacose -
2	Derivation of rate constant	Chemical Kinetics by Laidler
		Kinetics
		Kinetics and Mechanisms of
		Chemical Transformations by
		J.Rajaram J.C. Kuriacose -
3	Determination of free energy, enthalpy and	Chemical Kinetics by Laidler
	entropy of activation and their significance	Kinetics
		Kinetics and Mechanisms of
		Chemical Transformations by
		J.Rajaram J.C. Kuriacose -
4	Potential energy surfaces	Chemical Kinetics by Laidler
		Kinetics
		Kinetics and Mechanisms of
		Chemical Transformations by
		J.Rajaram J.C. Kuriacose -
5	Potential energy surfaces	Chemical Kinetics by Laidler
		Kinetics
		Kinetics and Mechanisms of
		Chemical Transformations by
		J.Rajaram J.C. Kuriacose -
6	Applications of ACT to reactions in solution -	Chemical Kinetics by Laidler
	effect of pressure	Kinetics
		Kinetics and Mechanisms of
		Chemical Transformations by
		J.Rajaram J.C. Kuriacose -
7	Effect of dielectric constant -single sphere model	Chemical Kinetics by Laidler
		Kinetics
		Kinetics and Mechanisms of
		Chemical Transformations by
		J.Rajaram J.C. Kuriacose -
8	Effect of dielectric constant -double sphere model	Chemical Kinetics by Laidler

	_ _	
		Kinetics
		Kinetics and Mechanisms of
		Chemical Transformations by
		J.Rajaram J.C. Kuriacose -
9	Effect of ionic strength on reactions in solution	Chemical Kinetics by Laidler
		Kinetics
		Kinetics and Mechanisms of
		Chemical Transformations by
		J.Rajaram J.C. Kuriacose -
10	Cage effect	Chemical Kinetics by Laidler
		Kinetics
		Kinetics and Mechanisms of
		Chemical Transformations by
		J.Rajaram J.C. Kuriacose -
11	Kinetic isotope effect	Chemical Kinetics by Laidler
		Kinetics
		Kinetics and Mechanisms of
		Chemical Transformations by
		J.Rajaram J.C. Kuriacose -
12	Kinetic isotope effect	Chemical Kinetics by Laidler
		Kinetics
		Kinetics and Mechanisms of
		Chemical Transformations by
		J.Rajaram J.C. Kuriacose -
13	Linear free energy relationships— Hammett	Chemical Kinetics by Laidler
	equation	Kinetics
		Kinetics and Mechanisms of
		Chemical Transformations by
		J.Rajaram J.C. Kuriacose -
14	Linear free energy relationships— Hammett	Chemical Kinetics by Laidler
	equation	Kinetics
		Kinetics and Mechanisms of
		Chemical Transformations by
		J.Rajaram J.C. Kuriacose -
15	Linear free energy relationships— Taft equation	Chemical Kinetics by Laidler
		Kinetics
		Kinetics and Mechanisms of
		Chemical Transformations by
		J.Rajaram J.C. Kuriacose -

LESSON PLAN

2018-2019

EVEN SEMESTER

ELECTRO CHEMISTRY

III B.Sc.Chemistry - 5 hours /week

Week	Topics	Reference Books
1	Electrochemistry: Conductance - Metallic and electrolytic conductors - specific, equivalent and molar conductance.	R. Puri, L. R Sharma and M.S Pathania, Principles of Physical Chemistry, 43 rd Edition, Vishal Publishing Co., 2008.
		B.K Sharma, Electrochemistry, 4 th Edition, Goel Publishing House, 1990.
2	Measurement of conductance- variation of conductance with dilution for strong and weak electrolytes (qualitative explanation). Transport number and its determination by Hittorf's method.	R. Puri, L. R Sharma and M.S Pathania, Principles of Physical Chemistry, 43 rd Edition, Vishal Publishing Co., 2008.
		B.K Sharma, Electrochemistry, 4 th Edition, Goel Publishing House, 1990.
3	Ionic mobility - determination of ionic mobility – effect of temperature and concentration on ionic mobility, Ionic conductance - Kohlrausch's law and its applications.	R. Puri, L. R Sharma and M.S Pathania, Principles of Physical Chemistry, 43 rd Edition, Vishal Publishing Co., 2008.
		B.K Sharma, Electrochemistry, 4 th Edition, Goel Publishing House, 1990.
4	Theory of strong electrolytes - Debye - Huckel - Onsager theory-verification of Onsager equation.	R. Puri, L. R Sharma and M.S Pathania, Principles of Physical Chemistry, 43 rd Edition, Vishal Publishing Co., 2008.
		B.K Sharma, Electrochemistry, 4 th Edition, Goel Publishing House, 1990.

5	Wein effect and Debye Falkenhagen effect-ionic strength - activity and activity coefficients of strong electrolytes.	R. Puri, L. R Sharma and M.S Pathania, Principles of Physical Chemistry, 43 rd Edition, Vishal Publishing Co., 2008. B.K Sharma, Electrochemistry, 4 th Edition, Goel Publishing House, 1990.
6	Applications of conductivity measurements – degree of hydrolysis, solubility product and conductometric titrations.	R. Puri, L. R Sharma and M.S Pathania, Principles of Physical Chemistry, 43 rd Edition, Vishal Publishing Co., 2008. B.K Sharma, Electrochemistry, 4 th Edition, Goel Publishing House, 1990.
7	EMF: Galvanic cells-reversible and irreversible electrodes and cells - standard cell -emf and its measurement.	R. Puri, L. R Sharma and M.S Pathania, Principles of Physical Chemistry, 43 rd Edition, Vishal Publishing Co., 2008. B.K Sharma, Electrochemistry, 4 th Edition, Goel Publishing House, 1990.
8	Types of electrodes – electrode reactions- electrode potentials - reference electrodes-standard electrode potentials. Derivation of Nernst equation for electrode potential and cell emf - sign conventions	R. Puri, L. R Sharma and M.S Pathania, Principles of Physical Chemistry, 43 rd Edition, Vishal Publishing Co., 2008. B.K Sharma, Electrochemistry, 4 th Edition, Goel Publishing House, 1990.
9	Electrochemical series and its applications- formation of cells - electrode and cell reactions – cell emf	R. Puri, L. R Sharma and M.S Pathania, Principles of Physical Chemistry, 43 rd Edition, Vishal Publishing Co., 2008.

		B.K Sharma, Electrochemistry,
		4 th Edition, Goel Publishing House, 1990.
10	Chemical cells and Concentration cells with and without transference – examples and derivation of expressions for their emf's.	R. Puri, L. R Sharma and M.S Pathania, Principles of Physical Chemistry, 43 rd Edition, Vishal Publishing Co., 2008.
		B.K Sharma, Electrochemistry, 4 th Edition, Goel Publishing House, 1990.
11	Liquid junction potential - Applications of emf measurements-calculation of ΔG , ΔH , ΔS and equilibrium constants.	R. Puri, L. R Sharma and M.S Pathania, Principles of Physical Chemistry, 43 rd Edition, Vishal Publishing Co., 2008.
		B.K Sharma, Electrochemistry, 4 th Edition, Goel Publishing House, 1990.
12	Determination of pH using hydrogen, quinhydrone and glass electrodes - Potentiometric titrations.	R. Puri, L. R Sharma and M.S Pathania, Principles of Physical Chemistry, 43 rd Edition, Vishal Publishing Co., 2008.
		B.K Sharma, Electrochemistry, 4 th Edition, Goel Publishing House, 1990.
13	Applications of Concentration cells - determination of valency of ions - transport number – ionic product of water.	R. Puri, L. R Sharma and M.S Pathania, Principles of Physical Chemistry, 43 rd Edition, Vishal Publishing Co., 2008.
		B.K Sharma, Electrochemistry, 4 th Edition, Goel Publishing House, 1990.
14	Solubility product—Polarization - decomposition potential - over voltage - storage cells -lead acid battery - mechanism of discharging and recharging	R. Puri, L. R Sharma and M.S Pathania, Principles of Physical Chemistry, 43 rd Edition, Vishal Publishing Co., 2008.

		B.K Sharma, Electrochemistry, 4 th Edition, Goel Publishing House, 1990.
15	Fuel cells – types of fuel cells – Hydrogen – Oxygen fuel cell.	R. Puri, L. R Sharma and M.S Pathania, Principles of Physical Chemistry, 43 rd Edition, Vishal Publishing Co., 2008. B.K Sharma, Electrochemistry, 4 th Edition, Goel Publishing House, 1990.

Lesson Plan for the year 2018- 2019

II M.Sc. THERMODYNAMICS

1 hour/week

Dr.S.Jhancy Mary

Week	Portions to be covered	Reference
Week 1	Thermodynamics and Mathematical Probability	Statistical Thermodynamics by M.C. Gupta Thermodynamics by Rajaram Kuriacose
Week 2	Sterling approximation	Statistical Thermodynamics by M.C. Gupta Thermodynamics by Rajaram Kuriacose
Week 3	Lagrange's method of indeterminate multipliers	Statistical Thermodynamics by M.C. Gupta Thermodynamics by Rajaram Kuriacose
Week 4	Distribution and most probable distribution	Statistical Thermodynamics by M.C. Gupta Thermodynamics by Rajaram Kuriacose
Week 5	Distinguishable and Indistinguishable particles	Statistical Thermodynamics by M.C. Gupta Thermodynamics by Rajaram Kuriacose
Week 6	Statistical Mechanics-Maxwell- Boltzmann distribution law-Derivation and applications	Statistical Thermodynamics by M.C. Gupta Thermodynamics by Rajaram Kuriacose

	Bose–Einstein distribution law-	Statistical Thermodynamics by M.C. Gupta
Week 7	derivation and applications	Thermodynamics by Rajaram
		Kuriacose
		Statistical Thermodynamics by
Week 8	Fermi –Dirac distribution law-	M.C. Gupta
week o	Derivation and applications	Thermodynamics by Rajaram
		Kuriacose
		Statistical Thermodynamics by
Week	Communican of the distribution lavve	M.C. Gupta
Week 9	Comparison of the distribution laws	Thermodynamics by Rajaram
		Kuriacose
Week 10	Relation between partition	Statistical Thermodynamics by
	andthermodynamic functions	M.C. Gupta
	•	Thermodynamics by Rajaram
		Kuriacose

Auxilium College (Autonomous), Vellore - 6 Odd Semester Lesson Plan 2018-2019

Dr. J. Rosaline Ezhilarasi

UCCHG16-Inorganic Chemistry, No. of hours per week - 4

Week	Unit	Portions to be Covered	References
I	I	General characteristics of d block elements and comparative study of Ti and V group elements.	Inorganic Chemistry by P. L. Soni and Puri & Sharma.
II	I	Comparative study of Cr, Mn and Fe group elements.	Inorganic Chemistry by P. L. Soni and Puri & Sharma.
III	Ι	Chemistry of lanthanides and actinides.	Modern Inorganic Chemistry by R. D. Madan.
IV	II	Metallurgy and metallurgical processes - general methods of extraction, various concentration, refining and reduction methods.	Modern Inorganic Chemistry by R. D. Madan.
V	II	Extraction, properties and uses of Ti, Zr, Pt and Th.	Modern Inorganic Chemistry by R. D. Madan and Advanced Inorganic Chemistry by Cotton and Wilkinson.
VI	II	Extraction, properties and uses of U. Preparation and uses of ammonium molybdate, vanadium pentoxide, uranium hexa fluoride. Steel alloys - heat treatment of steel.	Modern Inorganic Chemistry by R. D. Madan.
VII	III	Fundamental particles of the nucleus - nucleon terminology, nuclides, isotopes, isobars, isotones, mirror nuclei and isomers.	Essentials of Nuclear Chemistry by H J Arnikar.

VIII	III	Nuclear forces operating between the nucleons- meson exchange theory and nuclear fluid theory, N/P ratio, curves, stability belts, the whole number rule and packing fraction.	Essentials of Nuclear Chemistry by H J Arnikar and Elements of Nuclear Chemistry by A. K. Srivastava & P. C. Jain.
IX	III	Natural radioactivity - properties of radioactive rays -radioactive series including neptunium series - group displacement law -rate of disintegration and half-life period.	Modern Inorganic Chemistry by R. D. Madan.
X	IV	Nuclear binding energy: Mass defect - simple calculations involving mass defect and B.E per nucleon - magic numbers - liquid drop model - shell model.	Modern Inorganic Chemistry by R. D. Madan, Essentials of Nuclear Chemistry by H J Arnikar and Elements of Nuclear Chemistry by A. K. Srivastava & P. C. Jain.
XI	IV	Artificial radioactivity - induced radioactivity - nuclear transmutation reactions.	Modern Inorganic Chemistry by R. D. Madan.
XII	IV	Nuclear fission - nuclear energy - nuclear reactors - breeder reactor, nuclear power projects in India, nuclear fusion — thermonuclear reactions — energy source of the sun. and the stars.	Modern Inorganic Chemistry by R. D. Madan, Essentials of Nuclear Chemistry by H J Arnikar.
XIII	V	Biological importance of Fe, Zn, Mg and Co.	Fundamental Concepts of Applied Chemistry by Jayashree Ghosh and epgpathshala.
XIV	V	Biological role of Mo, Na, K, Ca and P.	Fundamental Concepts of Applied Chemistry by Jayashree Ghosh and epgpathshala.

pharmaceuticals, chelate therapy and contrast agents in MRI. of Applied by Jayashre epgpathshal.	e Ghosh and	
---	-------------	--

Auxilium College (Autonomous), Vellore - 6 Odd Semester Lesson Plan 2018-2019

Dr. J. Rosaline Ezhilarasi UCCHD16-General Chemistry III, No. of hours per week - 2

Week	Unit	Portions to be Covered	References
I	V	The Solid State - differences between	Principles of Physical
		crystalline and amorphous solids.	Chemistry by B. R. Puri, L.
			R Sharma and M.SPathania.
II	V	Symmetry in crystal systems - plane,	Principles of Physical
		axes and centre of symmetry, Elements of	Chemistry by B. R. Puri, L.
		symmetry.	R Sharma and M.SPathania.
III	V	Unit cell, space lattice, Bravais lattices,	Principles of Physical
		law of rational indices and Miller indices.	Chemistry by B. R. Puri, L.
			R Sharma and M.SPathania.
IV	V	X - ray diffraction – derivation of the	Principles of Physical
		Bragg's equation.	Chemistry by B. R. Puri, L.
			R Sharma and M.SPathania.
V	V	Experimental methods - Laue's method	Principles of Physical
		and powder method.	Chemistry by B. R. Puri, L.
			R Sharma and M.SPathania.
VI	V	Types of crystals -characteristics of	Principles of Physical
		molecular and covalent crystals.	Chemistry by B. R. Puri, L.

			R Sharma and M.SPathania.
VII	V	Characteristics of metallic and ionic crystals.	Principles of Physical Chemistry by B. R. Puri, L. R Sharma and M.SPathania.
VIII	V	Imperfections in crystal systems – Schottky and Frenkel defects, metal excess and metal deficiency defects.	Principles of Physical Chemistry by B. R. Puri, L. R Sharma and M.SPathania.
IX	V	Semiconductors – band theory of solids, intrinsic semiconductors, extrinsic semiconductors – n-type and p-type semiconductors.	Principles of Physical Chemistry by B. R. Puri, L. R Sharma and M.SPathania.
X	V	Three-dimensional close packing of spheres – ccp and hcp – characteristics of hcp, ccp and bcc structures,	Principles of Physical Chemistry by B. R. Puri, L. R Sharma and M.SPathania.
XI	V	Interstitial sites in closely packed arrangement of atoms – triangular, tetrahedral and octahedral sites, radius ratio rule and its effect on the shapes of ionic crystals.	Principles of Physical Chemistry by B. R. Puri, L. R Sharma and M.SPathania.
XII	V	Structures of ionic crystals-NaCl, CsCl, ZnS, Wurtzite, Fluorite and Rutile.	Principles of Physical Chemistry by B. R. Puri, L. R Sharma and M.SPathania.
XIII	III	Dicarboxylic acids – acid strengths, general methods of preparation and properties.	A Textbook of Organic Chemistry by Bahl and Arun Bahl.
XIV	III	Preparation and properties of oxalic and malonic acids.	A Textbook of Organic Chemistry by Bahl and

			Arun Bahl.
XV	III	Preparation and properties of succinic,	A Textbook of Organic
AV	111	Treparation and properties of succinic,	A Textbook of Organic
		glutaric and adipic acids.	Chemistry by Bahl and
			Arun Bahl.

Auxilium College (Autonomous), Vellore - 6 Odd Semester Lesson Plan 2018-2019

Dr. J. Rosaline Ezhilarasi PCCHK15-Molecular Spectroscopy, No. of hours per week - 2

Week	Unit	Portions to be Covered	References
I	III	Mossbauer spectroscopy - Mossbauer	Physical Methods in
		effect,recoilless emission and absorption,	Inorganic Chemistry by
		Doppler effect.	R.S. Drago.
II	III	Instrumentation, hyperfine interaction -	Physical Methods in
		chemical isomer shift, quadruple	Inorganic Chemistry by
		interaction and magnetic splitting.	R.S. Drago.
III	III	Interpretation of spectra - bonding and	Physical Methods in
		structures of Fe ²⁺ and Fe ³⁺ compounds, Sn ²⁺ and	Inorganic Chemistry by
		Sn ⁴⁺ compounds and detection of oxidation	R.S. Drago.
		states and in-equivalent MB atoms, Applications	
		of Mossbauer spectroscopy.	
IV	IV	ESR - principle, origin of an EPR signal,	Physical Methods in
		derivative spectra, g value - factors affecting the	Inorganic Chemistry by
		magnitude of g values, anisotropy.	R.S. Drago.
V	IV	Hyperfine interactions – hyperfine coupling	Physical Methods in
		constant, relative intensities of EPR signals,	Inorganic Chemistry by

		hyperfine splitting in Cu and Mn compounds,	R.S. Drago.
		Interpretation of the spectra of simple carbon	
		centered free radicals, zero field splitting and	
		Kramer's degeneracy.	
VI	IV	Electron delocalization – Mc Connell's equation,	Physical Methods in
V1	1 V	line width in solid state EPR, Applications of	
		ESR spectroscopy.	R.S. Drago.
		ESK specifoscopy.	K.S. Diago.
VII	IV	Photoelectron spectroscopy - Photo electric	Physical Methods in
		effect, UV and X-ray PES, Koopmans' theorem,	Inorganic Chemistry by
		fine structure in PES, interpretation of photo	R.S. Drago.
		electron spectra of H ₂ and N ₂ .	
VIII	IV	Interpretation of photo electron spectra of O_2 ,	Physical Methods in
		CO, NO, N ₂ O, H ₂ O, azide, HCl and NH ₃ .	Inorganic Chemistry by
			R.S. Drago.
			R.S. Diago.
IX	IV	Electron Spectroscopy for Chemical Analysis –	Physical Methods in
		applications of ESCA.	Inorganic Chemistry by
			R.S. Drago.
X	V	Rotational spectroscopy: Classification of	Fundamentals of
	·	molecules, rigid rotor model, selection rules,	Molecular
		intensity of spectral lines, effect of isotopic	
		substitution.	Banwell.
		substitution.	Banwen.
XI	V	Non rigid rotator, microwave spectra of	Fundamentals of
		polyatomic molecules.	Molecular
			Spectroscopy by C.N.
			Banwell.
VII	17	Vibrational anothrogonary Hammania assillator	Eundamentale -f
XII	V	Vibrational spectroscopy: Harmonic oscillator,	Fundamentals of
		selection rules, vibrational energy of diatomic	Molecular
		molecules, zero-point energy, force constant and	Spectroscopy by C.N.

		bond strength; anharmonicity, Morse potential energy diagram.	Banwell.
XIII	V	Franck Condon principle, vibrational spectra of poly atomic molecules. Vibration-rotation spectroscopy, P, Q, R, branches.	Fundamentals of Molecular Spectroscopy by C.N. Banwell.
XIV	V	Breakdown of Born-Oppenheimer approximation, vibration of polyatomic molecules, normal modes of vibration, overtones, hot bands, Fermi resonance.	Fundamentals of Molecular Spectroscopy by C.N. Banwell.
XV	V	Raman: Classical and quantum theories of Raman effect, pure rotational, vibrational and vibrational-rotational Raman spectra, selection rules, stokes and anti-stokes lines, mutual exclusion principle.	Molecular

Auxilium College (Autonomous), Vellore - 6 Even Semester Lesson Plan 2018-2019

Dr. J. Rosaline Ezhilarasi

UCCHJ16-Coordination Chemistry, No. of hours per week - 4

Week	Unit	Portions to be Covered	References
I	I	Co-ordination compounds: Definition of terms used – classification of ligands – chelation and effect of chelation – applications – co-ordination number and stereochemistry of complexes.	M. Satake Y. Mido, Coordination Chemistry by

			Ramalingam.
II	I	Nomenclature of Coordination compounds.	Coordination Chemistry by M. Satake Y. Mido.
III	I	Isomerism in complexes — conformation isomerism, ionization isomerism,hydrate isomerism, linkage isomerism, ligand isomerism, co-ordination isomerism, co-ordinationposition isomerism, polymerization isomerism, geometrical and optical isomerism in 4 and 6co-ordinated complexes.	Modern Inorganic Chemistry by R. D. Madan.
IV	II	Theory of coordination compounds – Werner theory and its experimental verifications.	Modern Inorganic Chemistry by R. D. Madan.
V	II	Sidgwick theory - EAN rule- limitations.	Modern Inorganic Chemistry by R. D. Madan and Advanced Inorganic Chemistry by Cotton and Wilkinson.
VI	II	Theory of bonding - Valence bond theory – hybridization, geometry and magnetic properties – failures of VBT.	Modern Inorganic Chemistry by R. D. Madan.
VII	III	Crystal Field theory – Factors affecting the magnitude Δ o - spectro chemical series - splitting of d– orbitals in octahedral, tetrahedral and square planar complexes.	Modern Inorganic Chemistry by R. D. Madan.
VIII	III	Crystal field stabilizationenergy – Calculation of CFSE in octahedral and tetrahedral complexes – low spin and high spincomplexes.	Modern Inorganic Chemistry by R. D. Madan.
IX	III	Explanation of magnetic properties and colour using CFT. Comparison between VBT and CFT.	Modern Inorganic Chemistry by R. D. Madan.

X	IV	Covalency in transition metal complexes: Evidences for covalency. Molecular Orbital theory:Metal orbitals and elementary idea,ligand orbitals suitable for σ and π bonding in octahedralGeometry.	Modern Inorganic Chemistry by R. D. Madan and Selected Topics in Inorganic Chemistry by Wahid U. Malik, G. D. Tuli and R. D. Madan.
XI	IV	Construction of qualitative MO energy level diagram for σ –bonding in octahedralgeometry. Effect of π bonding on the value of Δo .	Selected Topics in Inorganic Chemistry by Wahid U. Malik, G. D. Tuli and R. D. Madan.
XII	IV	Relationship between π bonding ability ofligands and spectrochemical series, Comparison between CFT and MO theories.	Selected Topics in Inorganic Chemistry by Wahid U. Malik, G. D. Tuli and R. D. Madan.
XIII	V	Pi acceptor ligands: Syntheses, properties of carbonyls ofNi, Cr, Fe.	Modern Inorganic Chemistry by R. D. Madan.
XIV	V	Syntheses, properties of carbonyls ofCo, Mn, W and Mo.	Modern Inorganic Chemistry by R. D. Madan.
XV	V	Bonding, hybridization and structures of carbonyls ofNi, Cr, Fe, Co, Mn, W and Mo.	Modern Inorganic Chemistry by R. D. Madan.

Auxilium College (Autonomous), Vellore - 6 Even Semester Lesson Plan 2018-2019

Dr. J. Rosaline Ezhilarasi

UCCHE16-General Chemistry IV, No. of hours per week - 2

Week	Unit	Portions to be Covered	References
I	IV	Thermodynamics - types of systems - isolated,	Principles of Physical
		closed, open, homogeneous and heterogeneous systems, phase, state of a system, state variables.	Chemistry by B. R. Puri,
		Thermodynamic equilibrium - thermal, mechanical	L. R Sharma and
		and chemical equilibria.	

			M.SPathania.
II	IV	Extensive and intensive properties, processes and their types — isothermal, adiabatic and isobaric processes, reversible and irreversible processes, nature of work and heat.	
III	IV	The first law of thermodynamics - concept of internal energy, statements of I law, state functions, exact and inexact differentials, the Euler reciprocal relation, enthalpy of a system, enthalpies of vaporization and fusion, heat capacity of a system - relationship between C_p and C_v in gaseous systems.	Principles of Physical Chemistry by B. R. Puri, L. R Sharma and M.SPathania.
IV	IV	Calculation of w, ΔU , q and ΔH for expansion and compression of ideal gases under reversible and irreversible isothermal conditions.	
V	IV	Adiabatic expansion – calculation of w, ΔU and ΔH , final temperatures in reversible and irreversible adiabatic expansions, Comparison of isothermal and adiabatic expansions, Zerothlaw of thermodynamics. Thermochemistry - heat of reaction, exothermic and endothermic reactions, relationship between q_p and q_v .	Principles of Physical Chemistry by B. R. Puri, L. R Sharma and M.SPathania.
VI	IV	Standard enthalpy changes of reactions, standard enthalpies of combustion, neutralization and formation, determination of enthalpies of reactions, variation of enthalpy of reaction with temperature - Kirchhoff's equations. Bond energies-definition, calculation and applications of bond energies.	Principles of Physical Chemistry by B. R. Puri, L. R Sharma and M.SPathania.
VII	IV	The Second law of thermodynamics - need for the second law, statements of II law, spontaneous processes, Carnot's cycle - efficiency of a heat engine-Carnot's theorem (statement only).	Principles of Physical Chemistry by B. R. Puri, L. R Sharma and M.SPathania.
VIII	V	Unit 5.1 - Entropy – the concept of entropy, entropy changes in isothermal expansion of an ideal gas, in reversible and irreversible processes, entropy change accompanying change of phase.	Principles of Physical Chemistry by B. R. Puri, L. R Sharma and M.SPathania.
IX	V	Calculation of entropy changes with changes in T, V, and P, entropy changes in different processes, entropy of a mixture of ideal gases, entropy of mixing, physical significance of entropy.	Principles of Physical Chemistry by B. R. Puri, L. R Sharma and

			M.SPathania.
X	V	Helmholtz and Gibbs free energy functions, variation of free energy change with T and P.	Principles of Physical Chemistry by B. R. Puri, L. R Sharma and M.SPathania.
XI	V	Maxwell's relations, criteria for reversible and irreversible processes, Gibbs-Helmholtz equation.	Principles of Physical Chemistry by B. R. Puri, L. R Sharma and M.SPathania.
XII	V	Partial molar properties – concept of chemical potential, the Gibbs-Duhem equation, variation of chemical potential with temperature and pressure.	Principles of Physical Chemistry by B. R. Puri, L. R Sharma and M.SPathania.
XIII	V	Chemical potential in a system of ideal gases, Clausius- Clapeyron equation – applications.	Principles of Physical Chemistry by B. R. Puri, L. R Sharma and M.SPathania.
XIV	V	Third law of thermodynamics - Nernst heat theorem, statement of third law.	Principles of Physical Chemistry by B. R. Puri, L. R Sharma and M.SPathania.
XV	V	Determination of absolute entropies of solids, liquids and gases, residual entropy.	Principles of Physical Chemistry by B. R. Puri, L. R Sharma and M.SPathania.

Even Semester Lesson Plan 2018-2019

Dr. J. Rosaline Ezhilarasi

Week	Unit	Portions to be Covered	References
I	II	CFT - salient features of CFT, crystal field splitting of dorbitals in octahedral complexes, Factors affecting the magnitude of Δ_o ,	Concise Coordination Chemistry by R. Gopalan, Selected Topics in Inorganic Chemistry by Wahid U. Malik, G. D. Tuli, R. D. Madan.
II	II	Crystal field splitting of dorbitals in tetrahedral, tetragonal and square planar complexes, Consequences of CF splitting - formation of high-spin and low-spin complexes.	
III	II	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Gopalan, Selected Topics in Inorganic
IV	II	Uses of CFSE values, Applications of CFT, limitations.	Concise Coordination Chemistry by R. Gopalan, Selected Topics in Inorganic Chemistry by Wahid U. Malik, G. D. Tuli, R. D. Madan.
V	II	Jahn-Teller distortion - theorem, z-in and z-out cases, Causes and consequences of Jahn-Teller distortion.	Concise Coordination Chemistry by R. Gopalan, Selected Topics in Inorganic Chemistry by Wahid U. Malik, G. D. Tuli, R. D. Madan.

VI	II	MOT - experimental evidences for metal-ligand covalent bonding in complexes, $\sigma-$ bonding in O_h complexes, Construction of MO diagrams.	Concise Coordination Chemistry by R. Gopalan, Selected Topics in Inorganic Chemistry by Wahid U. Malik, G. D. Tuli, R. D. Madan.
VII	II	Pi-bonding in O_h complexes, effect of π -bonding on the value of Δ_o , Relation between pi bonding ability of ligands and spectrochemical series	Gopalan, Selected Topics in Inorganic Chemistry by Wahid U. Malik, G. D. Tuli,
VIII	II	Comparison of CFT with MOT.	Concise Coordination Chemistry by R. Gopalan, Selected Topics in Inorganic Chemistry by Wahid U. Malik, G. D. Tuli, R. D. Madan.
IX	IV	Electron transfer reactions (redox reactions): Outer Sphere Mechanism- characteristics, factors influencing OSM, cross reactions — Marcus-Hush principle.	Concise Coordination Chemistry by R. Gopalan, Selected Topics in Inorganic Chemistry by Wahid U. Malik, G. D. Tuli, R. D. Madan.
X	IV	_	Concise Coordination Chemistry by R. Gopalan, Selected Topics in Inorganic Chemistry by Wahid U. Malik, G. D. Tuli, R. D. Madan.
XI	IV	OSM versus ISM.	Concise Coordination Chemistry by R. Gopalan, Selected Topics in Inorganic Chemistry by Wahid U. Malik, G. D. Tuli, R. D. Madan.
XII	IV	Two electron transfers, non- complementary electron transfer reactions, Reactions of	Concise Coordination Chemistry by R. Gopalan, Selected Topics in Inorganic

		the coordinated ligands.	Chemistry by Wahid U. Malik, G. D. Tuli, R. D. Madan.
XIII	IV	Geometrical and optical isomerization reactions, electron transfer reactions in biological systems – Cytochromes, Rubredoxins and Ferredoxins.	Gopalan, Selected Topics in Inorganic Chemistry by Wahid U. Malik, G. D. Tuli,
XIV	IV	Ligand substitution reactions in square-planar complexes — mechanism.	Concise Coordination Chemistry by R. Gopalan, Selected Topics in Inorganic Chemistry by Wahid U. Malik, G. D. Tuli, R. D. Madan.
XV	IV	Influences of entering, leaving and central metal ion on the reactivity of square planar complexes of Pt (II), Cis effect.	Gopalan, Selected Topics in Inorganic Chemistry by Wahid U. Malik, G. D. Tuli,

AUXILIUM COLLEGE (AUTONOMOUS) VELLORE – 6.

LESSON PLAN 2018-2019 UCCHH16

Organic Chemistry

Week	No of Hours	Units	Content	Reference
I	4	I	Stereoisomerism: Optical isomerism - Projection formulae: Fischer, Flying wedge, Sawhorse and Newmann projection formulae- Cahn - Ingold - Prelog rules - R-S notations for optical isomers with one and two asymmetric carbon atoms.	Reaction and reagents — O.P.Agarwal Organic Stereochemistry-Tewari Organic Reaction Mechanisms — Tewari
II	4	I	Optical activity in compounds not containing asymmetric carbon atoms — Biphenyls (atropisomerism), allenes and spiranes	Reaction and reagents – O.P.Agarwal Organic Stereochemistry- Tewari

			Geometrical isomerism: Cis - trans, syn – anti and E-Z notations	Organic Reaction Mechanisms – Tewari
III	4	I	Geometrical isomerism in maleic and fumaric acids and unsymmetrical ketoximes — methods of distinguishing geometrical isomers using melting point, dipole moment, dehydration, cyclisation and heat of combustion and hydrogenation.	Reaction and reagents – O.P.Agarwal Organic Stereochemistry-Tewari Organic Reaction Mechanisms – Tewari
IV	4	II	Tautomerism: Definition- keto- enol tautomerism (identification, acid and base catalysed mechanisms, preparations and characteristics), nitroacinitro tautomerism and amido-imido tautomerism.	Reaction and reagents — O.P.Agarwal Organic Stereochemistry-Tewari Organic Reaction Mechanisms — Tewari
V	4	II	Conformational analysis: Conformational analysis of ethane and n- butane	Reaction and reagents – O.P.Agarwal

			including energy diagrams — conformers of cyclohexane — axial and equatorial bonds — ring flipping showing axial equatorial inter conversions	Organic Stereochemistry- Tewari Organic Reaction Mechanisms – Tewari
VI	4	II	conformers of mono and di substituted cyclohexanes – 1:2 and 1:3 interactions	Reaction and reagents — O.P.Agarwal Organic Stereochemistry-Tewari Organic Reaction Mechanisms — Tewari
VII	4	III	Active methylene group – Characteristic reactions of active methylene groups in Malonic, Acetoacetic and cyano acetic esters and their synthetic uses.	Reaction and reagents — O.P.Agarwal Organic Stereochemistry-Tewari Organic Reaction Mechanisms — Tewari
VIII	4	III	Organic photochemistry: Carbonyl polarization — Reactivity of carbonyl group - acidity of alpha hydrogen. Photochemistry of carbonyl compounds	Reaction and reagents — O.P.Agarwal Organic Stereochemistry- Tewari

				Organic Reaction Mechanisms – Tewari
IX	4	III	Norrish type I and II reactions. Photo reduction, addition and isomerization.	Reaction and reagents — O.P.Agarwal Organic Stereochemistry-Tewari Organic Reaction Mechanisms — Tewari
X	4	IV	Reaction Mechanisms: Mechanism of Aldol, Benzoin and Darzen condensation— Claisen, Cannizaro, Reformatsky,	Reaction and reagents — O.P.Agarwal Organic Stereochemistry-Tewari Organic Reaction Mechanisms — Tewari
XI	4	IV	Perkin, Knoevenagal, Michael addition, haloform, Dakin, Wittig and Dieckmann reactions.	Reaction and reagents — O.P.Agarwal Organic Stereochemistry-Tewari Organic Reaction Mechanisms — Tewari

XII	4	IV	Mechanism of reduction with sodium borohydride, LiAlH4, Wolf Kishner and MPV reduction.	Reaction and reagents — O.P.Agarwal Organic Stereochemistry-Tewari Organic Reaction Mechanisms — Tewari
XIII	4	V	Molecular rearrangements: Classification as anionotropic — cationotropic and inter molecular — intra molecular. Pinacol-Pinacolone rearrangement Beckmann	Reaction and reagents – O.P.Agarwal Organic Stereochemistry-Tewari Organic Reaction Mechanisms – Tewari
XIV	4	V	Claisen rearrangement (sigmatropic), Paraclaisen rearrangement, Favorskii rearrangements, Fries rearrangements (two mechanisms),	Reaction and reagents — O.P.Agarwal Organic Stereochemistry-Tewari Organic Reaction Mechanisms — Tewari
XV	4	V	Benzidine rearrangement. (Mechanism, evidence for carbonium ion intermediate formation – migratory attitude – inter / intra molecular rearrangement)	Reaction and reagents – O.P.Agarwal Organic Stereochemistry- Tewari

PCCHJ15
SYNTHETIC ORGANIC CHEMISTRY

Week	No of Hours	Units	Content	Reference
I	2	I	Retrosynthesis, disconnection approach, synthons, linear and convergent Synthesis	Disconnection Approach- Stuart Warren
II	2	I	One group C-X disconnection and two group C-X disconnection. Umpolung of reactivity	Disconnection Approach- Stuart Warren
III	2	I	Protection of functional groups (hydroxyl, amino, carbonyl and carboxyl groups).	Disconnection Approach- Stuart Warren
IV	2	I	Synthesis of target molecules based on disconnection and synthon approach - Longifolene, camphor	Disconnection Approach- Stuart Warren

V	2	I	Reserpine	Disconnection Approach- Stuart Warren
VI	2	I	Saccharine, paracetamol, morpholine.	Disconnection Approach- Stuart Warren
VII	2	II	Assymmetric synthesis asymmetric induction methods, Chiral auxilliary, Chiral pool.	Advanced Organic Chemistry by Clayden & Greeves
VIII	2	II	Substrate, Chiral catalyst, Chiral reagent,	Advanced Organic Chemistry by Clayden & Greeves
IX	2	II	Enantiomeric excess	Advanced Organic Chemistry by Clayden & Greeves

X	2	П	kinetic resolution methods	Advanced Organic Chemistry by Clayden & Greeves
XI	2	П	Optical resolution	Advanced Organic Chemistry by Clayden & Greeves
XII	2	П	Diastereomeric excess, enantio-discrimination.	Advanced Organic Chemistry by Clayden & Greeves
XIII	2	V	Preparation of various phenoxides.	Organic synthesis by Puneet Karnard
XIV	2	V	Epoxide rearrangement, Stereoselective Claisen rearrangement.	Organic synthesis by Puneet Karnard
XV	2	V	Retro Diel's Alder reaction.	Organic synthesis by Puneet Karnard

UCCHA16

General Chemistry I

Week	No of Hours	Units	Content	Reference
Ι	2	I	Valency, oxidation number, oxidation and reduction in terms of oxidation number.	Advanced inorganic Chemistry – R.D. Madan
II	2	I	Balancing chemical equations - oxidation number method.	Advanced inorganic Chemistry – R.D. Madan

III	2	I	Balancing chemical equations - ion electron method.	Advanced inorganic Chemistry – R.D. Madan
IV	2	П	General classification of elements in periodic table, general characteristics of s, and p block elements	Advanced inorganic Chemistry – R.D. Madan
V	2	I	General characteristics of d and f block elements	Advanced inorganic Chemistry – R.D. Madan
VI	2	IV	Acid- base equilibria, ka, kb simple problems	Physical Chemistry – Puri and Sharma
VII	2	IV	Inorganic qualitative analysis, reactions involved in the separation and identification of anions and cations	Practical Chemistry - O.P.Pandey
VIII	2	IV	Common ion effect.	Practical Chemistry - O.P.Pandey

IX	2	IV	Solubility product principle, relation between solubility and solubility product.	Practical Chemistry – O.P Pandey
X	2	IV	Application of common ion effect and solubility product principle in inorganic qualitative analysis,	Practical Chemistry – O.P Pandey
XI	2	V	Eliminating the interfering radicals, significance of sodium carbonate extract	Practical Chemistry – O.P Pandey
XII	2	V	Spot test reagents – Magneson	Practical Chemistry – O.P Pandey
XIII	2	V	Aluminon, Nesslers	Practical Chemistry – O.P Pandey
XIV	2	V	Thiourea, Cupferon	Practical Chemistry – O.P Pandey

	2	V	DMG	Practical
XV				Chemistry – O.P
ΛV				Chemistry – O.P Pandey

UECHC16
Chemistry of Natural Products

Week	No of Hours	Units	Content	Reference
I	4	I	Carbohydrates: Classification, Chain lengthening and shortening of aldoses, Epimerisation, Constitution of glucose, Reactions of glucose- osazone formation, Cyclic structure- pyranose and furanose forms, Mutarotation and its mechanism	Advanced organic chemistry- Bahl and Bahl, Chemistry of Natural Products- Vol I – Gurdeep Chatwal
II	4	I	Determination of ring size – Haworth projection formula, Constitution of fructose, Reactions of fructose – osazone, Configuration of glucose and fructose	Advanced organic chemistry- Bahl and Bahl, Chemistry of Natural Products- Vol I – Gurdeep Chatwal
III	4	I	Constitution of sucrose, maltose, starch and cellulose	Advanced organic chemistry- Bahl and Bahl, Chemistry of Natural Products- Vol I – Gurdeep Chatwal

IV	4	II	Classification of aminoacids- essential and nonessential aminoacids, Preparation of alpha aminoacids and properties- Zwitter ions, Isoelectric points	Advanced organic chemistry- Bahl and Bahl, Chemistry of Natural Products- Vol I – Gurdeep Chatwal
V	4	II	Synthesis of peptides, Classification of proteins, Denaturation	Advanced organic chemistry- Bahl and Bahl, Chemistry of Natural Products- Vol I – Gurdeep Chatwal
VI	4	II	Primary and secondary structure of proteins- Helical and Sheet structure	Advanced organic chemistry- Bahl and Bahl, Chemistry of Natural Products- Vol I – Gurdeep Chatwal
VII	4	III	Nucleic acid, Nucleoside, Nucleotide, Phosphodiester bonds, types of nucleic acids	Organic chemistry- Anupa and Anup and Bahl, Chemistry of Natural Products- Vol II – Gurdeep Chatwal
VIII	4	III	RNA and DNA structures,Sequencing of DNA, Synthesising an oligonucleotide array	Organic chemistry- Anupa and Anup and Bahl, Chemistry of Natural Products- Vol II – Gurdeep Chatwal

IX	4	Ш	Denaturation of RNA and DNA, Replication, Transcription and Translation, Protein synthesis	Organic chemistry- Anupa and Anup and Bahl, Chemistry of Natural Products- Vol II – Gurdeep Chatwal
X	4	IV	Terpenes- Classification, Isoprene rule, Structure elucidation of geraniol, alpha pinene, alpha terpineol	Advanced organic chemistry- Bahl and Bahl, Chemistry of Natural Products- Vol II – Gurdeep Chatwal
XI	4	IV	Structure elucidation of camphor, Alkaloids- Classification, General methods of structure determination.	Advanced organic chemistry- Bahl and Bahl, Chemistry of Natural Products- Vol II – Gurdeep Chatwal
XII	4	IV	Structure elucidation of coniine, piperine and nicotine	Advanced organic chemistry- Bahl and Bahl, Chemistry of Natural Products- Vol II – Gurdeep Chatwal
XIII	4	V	Flavones- Sources, Isolation, Separation, Purification and properties. Structure elucidation of flavone	Chemistry of Natural Products- Vol II – Gurdeep Chatwal

XIV	4	V	Structure elucidation of flavone, Vitamins-Source, Classification.	Chemistry of Natural Products- Vol I and Vol II – Gurdeep Chatwal
XV	4	V	Structure elucidation of pyridoxine, thiamine and ascorbic acid	Chemistry of Natural Products- Vol I – Gurdeep Chatwal

PECHG15

Organometallic and Bioinorganic Chemistry

Week	No of Hours	Units	Content	Reference
I	3	I	Introduction-18 electron rule and EAN rule — calculation, hapacity- definition.	Organometallic chemistry of transition metals by Robert H. Crabtree
II	3	I	Metal carbonyl complexes and poly nuclear carbonyl complexes Preparation and properties, Structure and Bonding.	Organometallic chemistry of transition metals by Robert H. Crabtree
III	3	I	Carbonylate ion, Carbonyl hydride complex- Preparation and properties, Structure	Organometallic chemistry of transition metals by Robert H. Crabtree

	1		1.5	T
			and Bonding.	
IV	3	II	Nitrosyl complex, Metal alkyls - Preparation and properties, Structure and Bonding.	Organometallic chemistry of transition metals by Robert H. Crabtree
V	3	I	Carbenes, Carbynes and carbides, non-aromatic alkenes and alkyne complex, metallocenes - Preparation and properties, Structure and Bonding.	Organometallic chemistry of transition metals by Robert H. Crabtree
VI	3	IV	Metallo porphyrin and respiration (cytochromes).	Bioinorganic chemistry by Asim K Das
VII	3	IV	Interaction between heme and dioxygen - Structure and function of haemoglobin	Bioinorganic chemistry by Asim K Das

VIII	3	IV	Ferredoxin and Rubredoxin, Blue copper protein.	Bioinorganic chemistry by Asim K Das
IX	3	IV	Ion transport in membranes, Na, K balance, calcium in living cells (transport and regulation) selectivity of Ca ²⁺ over Mg ²⁺	Bioinorganic chemistry by Asim K Das
X	3	IV	Nitrogen fixation- atmospheric, industrial and biological.	Bioinorganic chemistry by Asim K Das
XI	3	V	Biological role of metalloenzymes - carboxy peptidases	Bioinorganic chemistry by Asim K Das
XII	3	V	Carbonic anhydrase- catalase,	Bioinorganic chemistry by Asim K Das
XIII	3	V	Peroxidase, oxatransferase enzymes, xanthine oxidase.	Bioinorganic chemistry by Asim K Das

XIV	3	V	Metals used for diagnosis.	Bioinorganic chemistry by Asim
				K Das
	3	V	Chemotherapy with	Bioinorganic
XV			particular reference to	chemistry by Asim
AV			anticancer drugs (platinum ammine halides, metallocenes and their halides).	K Das

UCCHB16 General Chemistry II

Week	No of Hours	Units	Content	Reference
I	2	I	Inductive effect, Electromeric effect	Reaction mechanisms including reaction intermediates by Aluwaliah
II	2	I	Mesomeric effect, Hyperconjugative effect.	Reaction mechanisms including reaction intermediates by Aluwaliah
III	2	I	Steric effect, Bond fission- homolytic and heterolytic	Reaction mechanisms including reaction intermediates by Aluwaliah
IV	2	II	Reaction intermediates, carbocations- generation, structure, stability and reactions.	Reaction mechanisms including reaction intermediates by Aluwaliah

V	2	I	Cabanions- generation, structure, stability and reactions	Reaction mechanisms including reaction intermediates by Aluwaliah
VI	2	IV	Free radicals- generation, structure, stability and reactions	Reaction mechanisms including reaction intermediates by Aluwaliah
VII	2	IV	Exceptional properties of Lithium.	Advanced inorganic Chemistry – R.D. Madan
VIII	2	IV	Diagonal relationship of Lithium and Magnesium.	Advanced inorganic Chemistry – R.D. Madan
IX	2	IV	Lithium- occurrence, ores, extraction from phosphate ore.	Advanced inorganic Chemistry – R.D. Madan
X	2	IV	Extraction from silicate ores and uses	Advanced inorganic Chemistry – R.D. Madan
XI	2	V	Preparation, properties and uses of lithium compounds	Advanced inorganic Chemistry – R.D. Madan

XII	2	V	Preparation, properties and uses of lithium compounds	Advanced inorganic Chemistry – R.D. Madan
XIII	2	V	Mesomeric state	Physical Chemistry- Puri and Sharma
XIV	2	V	Liquid crystals- Classification, vitreous state	Physical Chemistry- Puri and Sharma
XV	2	V	Liquid crystals- molecular rearrangements	Physical Chemistry- Puri and Sharma

Lesson Plan for the Year 2018 – 2019

ODD SEMESTER

B.Sc. Chemistry

UCCHA16- General Chemistry-I

Week	Portions to be covered	Reference	Teaching Methodology
I	Unit –IV Gaseous state - kinetic gas equation, derivation, gas laws from the kinetic gas equation, types of velocities - mean, Root Mean Square Velocity (RMS), Most Probable Velocities (MPV), calculation of molecular velocities. (No derivation).	i) Principles of Physical Chemistry by Puri and Sharma ii)Textbook of Physical Chemistry by P.L.Soni.	Chalk and Board
II	Maxwell's distribution of molecular velocities (derivation), equipartition of energy, collision number, Collision diameter, mean free path, definition.(No derivation)	i) Principles of Physical Chemistry by Puri and Sharmaii) Textbook of Physical Chemistry by P.L.Soni.	Chalk and Board
III	Equipartition of energy, collision number, Collision diameter, mean free path, definition.(No derivation)	i) Principles of Physical Chemistry by Puri and Sharma ii) Textbook of Physical Chemistry by P.L.Soni.	Chalk and Board

IV	Liquid State - qualitative treatment of the structure of liquids, surface tension – Definition, effects of surface tension,	i) Principles of Physical Chemistry by Puri and Sharma	Chalk and Board
		ii) Textbook of Physical Chemistry by P.L.Soni.	
V	Experimental determination – capillary rise method – drop weight method, applications	i) Principles of Physical Chemistry by Puri and Sharma	Chalk and Board
		ii) Textbook of Physical Chemistry by P.L.Soni.	
VI	Viscosity – definition, effects of viscosity on temperature and pressure, experimental determination - Ostwald's Viscometer method	i) Principles of Physical Chemistry by Puri and Sharma	Chalk and Board
		ii) Textbook of Physical Chemistry by P.L.Soni.	

VII	IUPAC Nomenclature- Introduction	Advanced Organic Chemistry by B.SBahl and Arun Bahl	Chalk and Board
VIII	IUPAC nomenclature of alcohols, alkanes, alkenes	Advanced Organic Chemistry by B.SBahl and Arun Bahl	Chalk and Board
IX	IUPAC nomenclature of alkynes, cycloalkanes, ethers, aldehydes, carboxylic acids and esters	Advanced Organic Chemistry by B.SBahl and Arun Bahl	Chalk and Board
X	Classical mechanics, e/m of an electron- John Dalton Theory- J.J Thomson model- Discovery of an electron Rutherford atom Model- Rutherford Scattering experiment	i) Principles of Physical Chemistry by Puri and Sharmaii) Textbook of Physical Chemistry by P.L.Soni.	Chalk and Board
X1	The Bohr theory of hydrogen atom, Sommerfeld extension of the Bohr theory.	i) Principles of Physical Chemistry by Puri and Sharma ii) Textbook of Physical Chemistry by P.L.Soni.	Chalk and Board

XII	Photoelectric effect and Compton effect- Wave mechanical concept of the atom, de Broglie's relationship	i) Principles of Physical Chemistry by Puri and Sharmaii) Textbook of Physical Chemistry by P.L.Soni.	Chalk and Board
XIII	Davisson and Germer experiment, wave nature of electron, Heisenberg's uncertainty principle	i) Principles of Physical Chemistry by Puri and Sharmaii) Textbook of Physical Chemistry by P.L.Soni.	Chalk and Board
XIV	Quantum mechanics- postulates of quantum mechanics, concept of operators, angular wave function, Eigen values, Schrodinger wave equation (no derivation) and significance of wave functions.	i) Principles of Physical Chemistry by Puri and Sharma ii) Textbook of Physical Chemistry by P.L.Soni.	Chalk and Board
XV	Radial and angular wave functions, probability distribution of electrons, radial probability distribution curves.	i) Principles of Physical Chemistry by Puri and Sharma ii) Textbook of Physical Chemistry by P.L.Soni.	Chalk and Board

Lesson Plan for the Year 2018 - 2019

M.Sc. Chemistry

ODD SEMESTER

PCCHL15- Electrochemistry

Week	Portions to be covered	Reference	Teaching Methodology
I	Unit –I :Activity and Activity coefficient, Mean ionic and Mean ionic activity coefficient, Ionic Strength and related problems. Debye Huckel Theory of Strong electrolytes	i) Introduction toElectrochemistry bySamuel Glasstoneii) Principles of PhysicalChemistry by Puri andSharma	Chalk and Board

II	Unit-I: Determination of activity coefficient by electrochemical method. Debye Huckel limiting law qualitative and quantitative verification of Debye Huckel Limiting law	i) Introduction to Electrochemistry by Samuel Glasstone ii) Principles of Physical Chemistry by Puri and Sharma	Chalk and Board
III	Unit-II: Different types of current-kinetic current, catalytic current, current for reversible and irreversible system. Qualitative and quantitative application of polarography to inorganic system	i) Analytical Chemistry by Khopkar ii) Instrumental Methods of Chemical analysis by M.S. Yadav	Chalk and Board
IV	Unit-II: Amperometric titrations, theory Types of titration curves	i) Analytical Chemistry by Khopkar i) Instrumental Methods of Chemical analysis by M.S. Yadav	Chalk and Board
V	Unit-II: Successive titration, Indicator electrode application	i) Analytical Chemistry by Khopkar	Chalk and Board

	Successive titration, Indicator	ii) Instrumental Methods	
	electrode application	of Chemical analysis by	
		M.S. Yadav	
VI	Unit-II: Cyclic Voltammetry,	i)Instrumental Methods	Chalk and
	Instrumentation and its advantages	of Chemical analysis by	Board
	and disadvantages	M.S. Yadav	
		ii) Analytical Chemistry	
		by Khopkar	
		iii) Principles of Physical	
		Chemistry by Puri and	
		Sharma	
VII	Unit-II: Application of Cyclic	i) Instrumental Methods	
	voltammetry to inorganic system	of Chemical analysis by	
		M.S. Yadav	
		ii) Analytical Chemistry	
		by Khopkar	
		iii) Principles of Physical	
		Chemistry by Puri and	
		Sharma	
VIII	Unit-III: Electrode-electrolyte	i) Modern	Chalk and
	interface- electrical double layer-	Electrochemistry by J.	Board
		Bockris and Reddy	

	Electrocapillary maximum.	ii) Introduction to	
	Lippmann Equation.	Electrochemistry by	
		Samuel Glasstone	
IX	Unit-III: Structure of double layers	i)Modern	Chalk and
	- Helmholtz Perrin, Guoy-	Electrochemistry by	Board
	Chapmann Model of double layers.	J. Bockris and Reddy	
		ii) Introduction to	
		Electrochemistry by	
		Samuel Glasstone	
X	Unit-III:Stern model of electrical	i) Modern	Chalk and
A	double layers. Fick's law of	Electrochemistry by	Board
	diffusion-Factors affecting Fick's	J. Bockris and Reddy	Domu
	law of diffusion-Significance.	3. Bookins and Ready	
		ii) Introduction to	
		Electrochemistry by	
		Samuel Glasstone	
XI	Unit-III: Membrane potential –	i) Modern	Chalk and
	current across the biological	Electrochemistry by	Board
	membrane— Axon membrane	J. Bockris and Reddy	

		ii) Introduction to	
		Electrochemistry by	
		Samuel Glasstone	
XII	Unit-III- Electrokinetic	i) Modern	Chalk and
	phenomena- Electroosmosis,	Electrochemistry by	Board
	Electrophoresis, Sedimentation		2000
	Potential and Streaming potential.	J. Bockris and Reddy	
	Totalism streaming potential.	ii) Introduction to	
		Electrochemistry by	
		Samuel Glasstone	
XIII	Unit-IV: Over potential-	i) Modern	Chalk and
	mechanism of the hydrogen and	Electrochemistry by	Board
	oxygen evolution reaction. Rates of		
	simple electrode reactions-	J. Bockris and Reddy	
	elementary electron –electrode	ii) Introduction to	
	process.	Electrochemistry by	
		Samuel Glasstone	
XIV	Unit-IV: Butler-Volmer equation	i) Modern	Chalk and
	for single step electron transfer	Electrochemistry by	Board
	reaction, significance of electron	I. Do alraio and D. 11-	
	exchange current density and	J. Bockris and Reddy	
	symmetry factor.	ii) Introduction to	
		Electrochemistry by	
	Rates of multistep electrode	Samuel Glasstone	
	reactions, Butler–Volmer equation		

XV	for a multistep reaction, transfer coefficient and its significance. Unit-IV: Corrosion of metals –	i) Modern	Chalk and
	Theories of corrosion- types of corrosion-Pourbaix diagram	Electrochemistry by J. Bockris and Reddy	Board
	Passivation of metals- Flade Potential- Evan's diagram	ii) Introduction to Electrochemistry by	
	Electro deposition – principle and applications, electrochemical reactions of technological interest.	Samuel Glasstone	

${\bf Lesson\ Plan\ for\ the\ Year\ 2018-2019}$ ${\bf PCCHA15\text{-}Stereochemistry\ and\ Conformational\ Analysis}$

Week	Portions to be covered	Reference	Teaching
			methodology
	Introduction to	Stereochemistry and Conformational Analysis	Chalk and
	stereochemistry	by P.S. Kalsi	Board
II	S _N 1 reaction and	Stereochemistry and Conformational Analysis	Chalk and
	mechanism, Ambident	by P.S. Kalsi	Board
	nucleophile-Single		
	electron transfer		
	mechanism		
III	S _N 2 reaction and	Stereochemistry and Conformational Analysis	Chalk and
	mechanism, Effect of	by P.S. Kalsi	Board
	substrate -Nucleophile		
	and leaving group		
IV	S _N 2 reaction and	Stereochemistry and Conformational Analysis	Chalk and
	mechanism, Effect of	by P.S. Kalsi	Board
	solvent and nucleophile		
V	Role of crown ethers-	Stereochemistry and Conformational Analysis	Chalk and
	Phase transfer catalysis	by P.S. Kalsi	Board

VI	Nucleophilic substitution	Stereochemistry and Conformational Analysis	Chalk and
	at allylic halides	by P.S. Kalsi	Board
VII	Nucleophilic substitution	Stereochemistry and Conformational Analysis	Chalk and
	at arylic halides	by P.S. Kalsi	Board
VIII	Nucleophilic substitution	Stereochemistry and Conformational Analysis	Chalk and
	at vinylic halides	by P.S. Kalsi	Board
IX	Nucleophilic substitution	Stereochemistry and Conformational Analysis	Chalk and
	at benzylic halides	by P.S. Kalsi	Board
X	Single electron transfer	Stereochemistry and Conformational Analysis	Chalk and
	mechanism	by P.S. Kalsi	Board
XI	Mixed SN1 and SN2,	Stereochemistry and Conformational Analysis	Chalk and
	S _N i mechanism	by P.S. Kalsi	Board
XII	Neighbouring group	Stereochemistry and Conformational Analysis	Chalk and
	participation	by P.S. Kalsi	Board

NGP in aromatic rings,	Stereochemistry and Conformational Analysis	Chalk and
sigma bond and double	by P.S. Kalsi	Board
bond		
NGP in cyclic systems	Stereochemistry and Conformational Analysis	Chalk and
	by P.S. Kalsi	Board
NGP in bridge head	Stereochemistry and Conformational Analysis	Chalk and
compounds	by P.S. Kalsi	Board
	sigma bond and double bond NGP in cyclic systems NGP in bridge head	sigma bond and double by P.S. Kalsi NGP in cyclic systems Stereochemistry and Conformational Analysis by P.S. Kalsi NGP in bridge head Stereochemistry and Conformational Analysis

Lesson Plan for the Year 2018 – 2019

B.Sc. Chemistry

EVEN SEMESTER

UCCHB16 - General Chemistry-II

Week	Portions to be covered	Reference	Teaching Methodology
I	Alkanes - chemical properties, mechanism of free radical reactions, halogenation alkanes	Advanced Organic Chemistry by B.SBahl and Arun Bahl	Chalk and Board
II	Alkenes - addition reactions of alkenes with hydrogen, halogens, hydrogen halides.	Advanced Organic Chemistry by B.SBahl and Arun Bahl	Chalk and Board
III	Markownikoff's rule and anti Markownikoff's rule (peroxide effect).	Advanced Organic Chemistry by B.SBahl and Arun Bahl	Chalk and Board

IV	Action of alkene with sulphuric acid and water	Advanced Organic Chemistry by B.S Bahl and Arun Bahl	Chalk and Board
V	Hydroboration, ozonolysis, hydroxylation with KMnO ₄ , allylic substitution by NBS	_	Chalk and Board
VI	Dienes - types, stability and 1,2 and 1,4 addition reactions	Advanced Organic Chemistry by B.SBahl and Arun Bahl	Chalk and Board
VII	Diels –Alder reaction and its application.	i) Principles of Physical Chemistry by Puri and Sharmaii) Textbook of Physical Chemistry by P.L.Soni.	Chalk and talk method
VII	Solutions- Types- Ideal solution- Non ideal solution- Solutions of liquids in liquids- Raoult's law	Principles of Physical Chemistry by Puri and Sharma	Chalk and talk method

VIII	Vapour pressure curves of ideal solution and non-ideal solution	Principles of Physical Chemistry by Puri and Sharma	Chalk and talk method
VIII	Solutions - solutions of gases in liquids, Henry's law.	Advanced Organic Chemistry by B.SBahl and Arun Bahl	Chalk and talk method
IX	Binary liquid mixtures and ideal solutions- Deviations from ideal behaviour,	Advanced Organic Chemistry by B.SBahl and Arun Bahl	Chalk and talk method
X	Vapour pressure-composition curves of miscible binary mixtures	Principles of Physical Chemistry by Puri and Sharma	Chalk and talk method
X1	Boiling point composition curves of miscible binary mixtures	Principles of Physical Chemistry by Puri and Sharma	Chalk and talk method
XII	Azeotropic distillation.	Principles of Physical Chemistry by Puri and Sharma	Chalk and talk method

XIII	Relationship between Henry's law and Raoult's law	Principles of Physical Chemistry by Puri and Sharma .	Chalk and talk method
XIV	Problems solved on Henry's law	Principles of Physical Chemistry by Puri and Sharma. Textbook of Physical Chemistry by P.L.Soni.	Chalk and talk method
XV	Problems in Physical chemistry	Principles of Physical Chemistry by Puri and Sharma. Textbook of Physical Chemistry by P.L.Soni.	Chalk and talk method

Auxilium College (Autonomous), Gandhi Nagar, Vellore – 632 006. Lesson Plan for the Year 2018 – 2019

EVEN SEMESTER

II M.Sc., Chemistry

PCCHM15-Natural Products and Bioorganic Chemistry

Week	Portions to be covered	Reference	Platform (LMS)
I	Amino acids - metabolism of amino acids - oxidative deamination, transamination reactions and urea cycle.	Organic Chemistry by I. L. Finar. Organic Chemistry of Natural Products by Gurdeep R. Chatwal	Chalk and talk method
II	Peptides - synthesis of tripeptide - solid phase peptide synthesis - Merrifield synthesis.	Organic Chemistry by I. L. Finar. Organic Chemistry of Natural Products by Gurdeep R. Chatwal	Chalk and talk method
III	Separation and purification of proteins, dialysis, gel filtration and electrophoresis.	Organic Chemistry by I. L. Finar.	Chalk and talk method

		Organic Chemistry of Natural Products	
		by Gurdeep R.	
		Chatwal	
		Chatwar	
IV	Structural aspects of proteins	Organic Chemistry	Chalk and talk
		by I. L. Finar.	method
		Organic Chemistry	
		of Natural Products	
		by Gurdeep R.	
		Chatwal	
V	Determination of structure of proteins by XRD	Organic Chemistry	Chalk and talk
	method.	by I. L. Finar.	method
		Organic Chemistry	
		of Natural Products	
		by Gurdeep R.	
		Chatwal	
VI	Determination of structure of proteins by cryoscopy	Organic Chemistry	Chalk and talk
	method and NMR.	by I. L. Finar.	method
		Organic Chemistry.	
		of Natural Products	
		by Gurdeep R	
		Chatwal	

VII	Biosynthesis of amino acids - phenylalanine, tyrosine	Organic Chemistry	Chalk and talk
	and proline only	by I. L. Finar.	method
		Organic Chemistry	
		of Natural Products	
		by Gurdeep R.	
		Chatwal	
VIII	Nucleic acids - introduction - types of nucleic acids -	Principles of	Chalk and talk
	structure of nucleosides and nucleotides.	Biochemistry by	method
		Nelson and Cox	
		Lehninger.	
IX	DNA and RNA-polynucleotide chain - structural	Principles of	Chalk and talk
	features of DNA and RNA - Watson-Crick Model.	Biochemistry by	method
		Nelson and Cox	
		Lehninger.	
X	Chemical and enzymatic hydrolysis of nucleic acids	Principles of	Chalk and talk
		Biochemistry by	method
		Nelson and Cox	
		Lehninger.	
XI	DNA sequence determination by chemical and	Principles of	Chalk and talk
	enzymatic methods	Biochemistry by	method
		Nelson and Cox	
		Lehninger.	
XII	DNA metabolism-replication - mechanism-	Principles of	Chalk and talk
		Biochemistry by	method

		Nelson and Cox Lehninger.	
XIII	Transcription - synthesis of RNA and its mechanism.	Principles of Biochemistry by Nelson and Cox Lehninger.	Chalk and talk method
XIV	Genetic code - origin and evolution, Gene expression-Gene mutation-Gene transcription and gene translation	Principles of Biochemistry by Nelson and Cox Lehninger.	Chalk and talk method
XV	Salient features- Wobble hypothesis.	Principles of Biochemistry by Nelson and Cox Lehninger.	Chalk and talk method

Lesson Plan for the Year 2018 – 2019

EVEN SEMESTER

M.Sc. Chemistry

PCCHF15-Group Theory and Quantum Chemistry

Week	Portions to be covered	Reference	Teaching methodology
I	Introduction - symmetry	Group Theory and Its	Chalk and talk method
	elements and symmetry	Applications to Chemistry	
	operations, group postulates and	by K. V. Raman	
	types of groups, sub groups, abelian and non-abelian groups	Group Theory in	
	doction and non doction groups	Chemistry by M. S.	
		Gopinathan and	
		V. Ramakrishnan	
II	Group multiplication table,	Group Theory and Its	Chalk and talk method
	similarity transformations and	Applications to Chemistry	
	classes of symmetry operations	by K. V. Raman	
		Group Theory in	
		Chemistry by M. S.	
		Gopinathan and	
		V. Ramakrishnan	
III	Molecular point groups - point	Group Theory and Its	Chalk and talk method
	groups of molecules, point	Applications to Chemistry	
	groups of tetrahedral and	by K. V. Raman	
	octahedral molecules.		
	Identification of symmetry		

	operations and determination of	Group Theory in	
	point groups.	Chemistry by M. S.	
		Gopinathan and	
		V. Ramakrishnan	
IV	Matrices - matrix representations	Group Theory and its	Chalk and talk method
	of symmetry operations,	Applications to Chemistry	
	reducible and irreducible	by K. V. Raman	
	representations.	Group Theory in	
		Chemistry by M. S.	
		Gopinathan and	
		V. Ramakrishnan	
V	Orthogonality theorem and its	Group Theory and its	Chalk and talk method
	consequences, properties of	Applications to Chemistry	
	irreducible representations,	by K. V. Raman	
	labelling of irreducible	Group Theory in	
	representations.	Chemistry by M. S.	
		Gopinathan and	
		V. Ramakrishnan	
VI	Crystallographic symmetry - the	Group Theory and its	Chalk and talk method
	32 crystallographic point groups	Applications to Chemistry	
	- space groups - screw axis -	by K. V. Raman	
	glide planes - comparison of	Group Theory in	
	crystallographic symmetry with	Chemistry by M. S.	
	molecular symmetry.	Gopinathan and	
		V. Ramakrishnan	

VII	Construction of character table	Group Theory and its	Chalk and talk method
	for C _{2V} and C _{3V} point groups -	Applications to Chemistry	
	explanation for the complete	by K. V. Raman	
	character table for C_{2V} and C_{3V} point groups.	Group Theory in Chemistry by M. S.	
		Gopinathan and	
		V. Ramakrishnan	
		Group theory and its	
		application by A.	
		Salahuddin Kunju and	
		G. Krishnan	
VIII	Selection rules for vibrational IR	Group Theory and its	Chalk and talk method
	and Raman spectra. Mutual	Applications to Chemistry	
	exclusion rule for molecules with	byK. V. Raman	
	centre of symmetry.	Group Theory in	
		Chemistry by M. S.	
		Gopinathan and	
		V. Ramakrishnan	
IX	Applications to molecular	Group Theory and its	Chalk and talk method
	vibrations (IR and Raman) for	Applications to Chemistry	
	determining symmetry of normal	by K. V. Raman	
	modes of vibration in nonlinear	Group Theory in	
	molecules H ₂ O, CH ₄ , BF ₃ and	Chemistry by M. S.	
	NH ₃ using group theory	Gopinathan and	
		V. Ramakrishnan	

		Group theory and its	
		application by A.	
		Salahuddin Kunju and	
		G. Krishnan	
X	Hybrid orbitals in nonlinear	Group Theory and its	Chalk and talk method
	molecules CH ₄ , XeF ₄ , BF ₃ , SF ₆ ,	Applications to Chemistry	
	NH ₃ . Application of group	by K. V. Raman	
	theory to electronic spectra of ethylene and formaldehyde.	Group Theory in	
	emytene und formatdenyde.	Chemistry by M. S.	
		Gopinathan and	
		V. Ramakrishnan	
		Group theory and its	
		application by A.	
		Salahuddin Kunju and	
		G. Krishnan	
XI	Approximation methods -	Quantum Chemistry by	Chalk and talk method
	variation methods - trial wave function - application of	R. K. Prasad	
	variation method to hydrogen	Quantum Chemistry by D.	
	and helium atoms.	A. Mcquarrie	
		Quantum Chemistry by A.	
		K. Chandra	
XII	Perturbation method and its	Quantum Chemistry by	Chalk and talk method
	application to particle in one dimensional box.	R. K. Prasad	

		Quantum Chemistry by D.	
		A. Mcquarrie	
		Quantum Chemistry by	
		A. K. Chandra	
XIII	Born Oppenheimer	Quantum Chemistry by	Chalk and talk
	approximation - treatment of molecules - application to helium	R. K. Prasad	method
	atom. Hydrogen molecule -	Quantum Chemistry by	
	Heiter-London theory or valence bond treatment - energy level	D. A. Mcquarrie Quantum	
	diagram.	Chemistry by	
		A. K. Chandra	
XIV	Linear Combination of Atomic	Quantum Chemistry by	Chalk and talk
	Orbitals (LCAO) - molecular orbital theory for hydrogen	R. K. Prasad	method
	molecule ion and hydrogen	Quantum Chemistry by	
	molecule.	D. A. Mcquarrie Quantum	
		Chemistry by	
		A. K. Chandra	
XV	Huckel's theory for conjugated	Quantum Chemistry by	Chalk and talk
	molecules - ethylene, butadiene and benzene - semi empirical	R. K. Prasad	method
	methods - Slater orbital and	Quantum Chemistry by	
	Hartree Fock–Self Consistent Field (HFSCF) methods.	D. A. Mcquarrie Quantum	
		Chemistry by A. K. Chandra	

Auxilium College (Autonomous), Gandhi Nagar, Vellore – 632 006.

Lesson Plan for the year 2018 – 2019

ODD SEMESTER

UACHA16 - Allied chemistry I

Week	Unit	Portions to be covered	Reference	Platform (LMS)
1	III	Chemical kinetics - rate of reaction, rate law, factors affecting rate of the reaction	Principles of Physical Chemistry B. R. Puri, L. R Sharma and M.S Pathania	Chalk and Board
2	III	Molecularity and Order of the reaction, difference between order and molecularity	Principles of Physical Chemistry B. R. Puri, L. R Sharma and M.S Pathania	Chalk and Board
3	III	Methods of determining the order of a reaction,	Textbook of Allied Chemistry V.Veeraiyan and A.N.S. Vasudevan	Chalk and Board
4	III	Derivation of rate constant of a first order reaction and half life period, Arrhenius theory- effect of temperature on reaction rate	Principles of Physical Chemistry B. R. Puri, L. R Sharma and M.S Pathania	Chalk and Board
5	V	Chromatography-Basic principle, types, factors involved	Principles of Inorganic Chemistry	Chalk and Board

			B.R Puri, L. R Sharma, and Kalia K. C	
6	V	column chromatography - principle, packing of columns, method of separation, identification of compounds and applications	Textbook of Allied Chemistry V.Veeraiyan and A.N.S. Vasudevan	Chalk and Board
7	V	. Paper chromatography – principle, procedure, $R_{\rm f}$ value and applications	Fundamentals of analytical chemistry Skoog, Douglas A. West, Donald M	Chalk and Board
8	V	Thin layer chromatography - principle, procedure, R _f value and applications	Textbook of Allied Chemistry V.Veeraiyan and A.N.S. Vasudevan	Chalk and Board
9	V	Ion exchange chromatography	Textbook of Allied Chemistry V.Veeraiyan and A.N.S. Vasudevan	Chalk and Board
10	I	Cements, setting of cements	Industrial chemistry Jain and Jain	Chalk and Board
11	I	Paints and adhesives	Textbook of Allied Chemistry V.Veeraiyan and A.N.S. Vasudevan	Chalk and Board

12	I	Types of glasses	Textbook of	
			Allied Chemistry	Chalk and
			V.Veeraiyan and	Board
			A.N.S.	
			Vasudevan	

I M.Sc. Chemistry – semester I

PCCHC15 – KINETICS AND PHOTOCHEMISTRY

Week	Unit	Portions to be covered	Reference	Platform
				(LMS)
1	II	Catalysis - Homogeneous catalysis - Acid-Base catalysis – types of acid-base catalysis specific and general acid-base catalysis. Mechanisms and kinetics of acid-base catalysed reactions Bronsted catalysis law	Chemical kinetics by Laidler Chemical kinetics by Rajaram Kuriocose	Chalk and Board
2	II	Enzyme catalysis – types of enzyme catalysis, rate of enzymes catalysed reaction by Michaelis-Menton mechanism – study of effect of substrate concentration, pH and temperature on enzyme catalysed reactions – inhibition in enzyme catalysed reactions.	Chemical kinetics by Laidler Chemical kinetics by Rajaram Kuriocose	Chalk and Board
3	II	Heterogeneous catalysis - surface reactions, types - physisorption and chemisorption, difference between physisorption and chemisorption, Lennard-Jones plots, Adsorption isotherms- Langmuir and BET isotherms - Postulates and derivations.	Chemical kinetics by Laidler Chemical kinetics by Rajaram Kuriocose	Chalk and Board

4	II	Kinetics of surface reactions — unimolecular and bimolecular reactions, catalysis by semiconductor oxides (n-type and p-type). Mechanism of heterogeneous catalytic reactions, Langmuir and Rideal-Eley mechanism-adsorption co-efficient and its	kinetics by Laidler Chemical kinetics by	Chalk and Board
5	III	significance. Complex reactions- definition with examples, kinetics of reversible, consecutive and parallel reaction, Fast reactions - relaxation methods -	Rajaram Kuriocose Chemical kinetics by Laidler	Chalk and Board
		pressure and temperature jump methods	Chemical kinetics by Rajaram Kuriocose	
6	III	Chain reactions - types of chain reaction (Stationary and non-stationary, General treatment of chain reactions – chain length – explosion limits.	Chemical kinetics by Laidler Chemical kinetics by Rajaram Kuriocose	Chalk and Board
7	III	Rice Herzfeld mechanism – order of reactions of unity, one-half and three-halves for photolysis of acetaldehyde, Stopped flow and flash photolysis methods.	Chemical kinetics by Laidler Chemical kinetics by Rajaram Kuriocose	Chalk and Board
8	IV	Photochemistry - Introduction, Absorption and emission of radiation – intensity distribution in the electronic, vibrational species - Franck Condon Principle, Jablonski diagram- radiative	Fundamentals of photochemistry by Mukherjee	Chalk and Board

		and non-radiative processes-fluorescence and phosphorescence	Photochemistry by Singh Photochemistry by Gurdeep Raj	
9	IV	E-type and P- type delayed fluorescence - spin forbidden radiative transition - internal conversion and intersystem crossing, E-type and P- type delayed fluorescence - spin forbidden radiative transition - internal conversion and intersystem crossing	Fundamentals of photochemistry by Mukherjee Photochemistry by Singh Photochemistry by Gurdeep Raj	Chalk and Board
10	IV	Decay of electronically excited states, Dissociation and predissociation of diatomic molecules - energy transfer process. Photophysical processes - kinetics of unimolecular and bimolecular photophysical processes- kinetic treatment of excimer and exciplex formation.	Fundamentals of photochemistry by Mukherjee Photochemistry by Singh Photochemistry by Gurdeep Raj	Chalk and Board
11	IV	Quenching - static and dynamic quenching- Stern-Volmer equation, Photochemical reactions - Photo assisted mechanism, hydrogen and halogen reactions	Fundamentals of photochemistry by Mukherjee Photochemistry by Singh Photochemistry by Gurdeep Raj	Chalk and Board
12	V	Kinetics of photochemical reaction, photoredox, photosubstitution, photoisomerization and photosensitized reactions.	Fundamentals of photochemistry by Mukherjee Photochemistry by Singh	Chalk and Board

			Photochemistry by Gurdeep Raj	
13	V	Photovoltaic and photogalvanic cells, photo assisted electrolysis of water.	Fundamentals of photochemistry by Mukherjee Photochemistry by Singh Photochemistry by Gurdeep Raj	Chalk and Board
14	V	Radiation chemistry – Interaction of high- energy radiation with matter -primary and secondary processes.	Fundamentals of photochemistry by Mukherjee Photochemistry by Singh Photochemistry by Gurdeep Raj	Chalk and Board
15	V	Application of solar energy conversion, G value - radiolysis of water – hydrated electron, Ion pair yield.	Fundamentals of photochemistry by Mukherjee Photochemistry by Singh Photochemistry by Gurdeep Raj	Chalk and Board

II M.Sc. Chemistry – Semester III

PCCHL15 - ELECTROCHEMISTRY

Week	Yeek Unit Portions to be covered		Reference	Platform
				(LMS)
1	V	Fuel cells - efficiency, Types of fuel cells	Electrochemistry by	Chalk and
			Bockris and Reddy	Board
2	V	Alkaline fuel cell, phosphoric acid fuel	Electrochemistry by	Chalk and
		cell	Bockris and Reddy	Board
3	V	High temperature and solid polymer	Electrochemistry by	Chalk and
		electrolyte fuel cell	Bockris and Reddy	Board
4	V	Kinetics of fuel cell	Electrochemistry by	Chalk and
			Bockris and Reddy	Board
5	V	general development of fuel cell	Electrochemistry by	Chalk and
		technology	Bockris and Reddy	Board
6	V	Electrochemical sensors- ion selective	Electrochemistry by	Chalk and
		electrodes	D.R. Crow	Board
7	V	Problems with ion selective electrode	Electrochemistry by	Chalk and
			D.R. Crow	Board
8	V	Chemically modified electrodes – gas	Electrochemistry by	Chalk and
		sensing electrodes	D.R. Crow	Board
9	V	Principle and working of Enzyme	Electrochemistry by	Chalk and
		electrodes	D.R. Crow	Board
10	V	Sensors based on modified metal oxide	Electrochemistry by	Chalk and
		field effect transistors (MOSFET)	D.R. Crow	Board
11	V	The wall jet ring disc electrodes	Electrochemistry by	Chalk and
		(WJRDE).	D.R. Crow	Board
12	I	Debye Huckel Limiting law - derivation	Physical chemistry by	Chalk and
			Puri and Sharma	Board

13	Ι	Quantitative verification of Debye	Physical chemistry by	Chalk and
		Huckel limiting law	Puri and Sharma	Board
14	Ι	Qualitative verification of Debye Huckel	Physical chemistry by	Chalk and
		limiting law	Puri and Sharma	Board
15	Ι	Debye Huckel limiting law at appreciable	Physical chemistry by	Chalk and
		concentration	Puri and Sharma	Board

Auxilium College (Autonomous), Gandhi Nagar, Vellore – 632006. Lesson Plan for the year 2018- 2019 EVEN SEMESTER

UACHB16- ALLIED CHEMISTRY

Week / Date	No of Hours	Units	Topics	Teaching Platform	Learning Resources *
I week	2	III	Ionic equilibria, strong and weak electrolytes, common ion effect,	Chalk and Board	Allied chemistry by Gopalan and sundaram.
II Week	2	III	Definition of pH, buffer solution.	Chalk and Board	Electrochemistry by
III Week	2	III	Electrochemical cells- construction	Chalk and Board	M.S. Yadav.
IV Week	2	III	Acid-base theories	Chalk and Board	Electrochemistry by Samuel
V Week	2	III	Electro-osmosis.	Chalk and Board	Electrochemistry by M.S.Yadav.

VI Week	2	III	Electrophoresis, electrodialysis	Chalk and Board	Electrochemistry by M.S.Yadav.
VII Week	2	IV	Photochemistry – laws of light absorption – Lamberts law and Lambert-Beer's Law.	Chalk and Board	Allied chemistry by Gopalan and sundaram.
VIII	2	IV	Grotthus – Draper law and Stark – Einstein law.	Chalk and Board	Photochemistry by Mukherjee.
IX Week	2	IV	Quantum yield – examples of photochemical reaction – kinetics of hydrogen – halogen reaction.	Chalk and Board	Photochemistry by Mukherjee.
X Week	2	IV	fluorescence, phosphorescence, photosynthesis chemiluminescence.	Chalk and Board	Allied chemistry by Gopalan and sundaram.
XI Week	2	V	Causes and treatment of Cancer, AIDS.	Chalk and Board	General reference from net.
XII Week	2	V	Causes and treatment of Diabetes.	Chalk and Board	

I M.Sc. Chemistry/I M.Sc. Electronic media – semester II

PNHRA 15 - HUMAN RIGHTS

week	No of	Units	Topics	Teaching	Learning
/	Hours			Methodology	Resources
Date					
I –	6	1	Types of rights, elements of rights	Chalk and Board	College book
III					and reference
					from net
IV-	6	2	Indian Constitution, Federalism	Chalk and Board	College book
VI			characteristics, Directive principles,		and reference
			Constitutional remedies		from net
VI –	6	3	Indian constitution, rights, articles	Chalk and Board	College book
IX					and reference
					from net
X-	6	4	Universal declaration of Human	Chalk and Board	College book
XII			Rights, Organs of UDHR		and reference
					from net
XIII-	6	5	Human trafficking, problems of	Chalk and Board	College book
XV			children and adult, National children		and reference
			policy		from net

II M.Sc. Chemistry – Semester III

PCCHO15 - THERMODYNAMICS

Week	No of	Units	Topics	Learning	Reference
/ Date	Hours			Platform	
I	4	I	Partial molar properties - Partial	Chalk and	Thermodynamics by
Week			molar free energy (Chemical potential) - Partial molar volume and Partial molar heat content-their significance.	Board	Rajaram Curiocose.
II		I	Variation of chemical potential with temperature and pressure,		Thermodynamics for students
Week	4		Duhem Margules equation - Determination of partial molar properties by general method,	Chalk and Board	Samuel Glasstone.
111			method of intercept.		Physical Chemistry by Puri and Sharma.
III Week	4	I	Determination of partial molar properties by Direct method, Apparent molar properties. Definition of fugacity-Variation of fugacity with temperature and pressure.	Chalk and Board	Physical Chemistry by Puri and Sharma.
IV Week	4	I	Concept of activity and activity co-efficient. Determination of standard free energies - Choice of standard states -determination of activity and activity co-efficient of non-electrolytes.	Chalk and Board	Physical Chemistry by Puri and Sharma
V Week	4	III	Factorization of molecular partition function, Mixture of gases.	Chalk and Board	Thermodynamics by Rajaram Curiocose.
VI Week	4	III	Evaluation of the independent molecular partition function- Translational, Rotational, Vibrational, Electronic and	Chalk and Board	Thermodynamics for students by Samuel Glasstone.
			Nuclear partition function	_ 0 0	

VII	4	III	Law of equi partition of	Chalk and	Physical Chemistry
Week			energies.Heat capacity of solids - Einstein model and Debye model.	Board	by Puri and Sharma
VIII Week	4	IV	Nuclear spin statistics – ortho - para nuclear states - ortho para hydrogen	Chalk and	Thermodynamics by Rajaram Curiocose.
			Nuclear spin statistics of Deuterium, Application of statistical thermodynamics	Board	Thermodynamics for students by Samuel Glasstone.
IX Week	4	IV	Electron gas in metals, Black body radiation - Planck's distribution law, Stefan- Boltzmann law, Wein's law	Chalk and Board	Physical Chemistry by Puri and Sharma
X Week	4	IV	Uses of spectroscopic and structural data to calculate thermodynamic functions	Chalk and Board	Physical Chemistry by Puri and Sharma

XI Week	4	V	Non equilibrium thermodynamics: Postulates of non equilibrium thermodynamics -conservation of mass and energy - entropy production	Chalk and Board	Thermodynamics by Rajaram Curiocose.
XII Week	4	V	entropy Production in chemical reactions - entropy flow in open systems.	Chalk and Board	Thermodynamics for students by Samuel Glasstone.
XIII Week	4	V	Transformation properties of rates and affinities - linear laws relative to fluxes and forces.	Chalk and Board	Physical Chemistry by Puri and Sharma
XIV Week	4	V	Curie's theorem, Onsagar's reciprocity relation, Relaxation phenomenon.	Chalk and Board	Thermodynamics by Rajaram Curiocose.

Auxilium College (Autonomous), Gandhi Nagar, Vellore – 632 006.

Lesson Plan for the year 2018 – 2019

ODD SEMESTER

SKILL-BASED ELECTIVE

II B.Sc. CHEMISTRY

USCHB316 - MEDICINAL CHEMISTRY

Week	Unit	Portions to be covered	Reference	Teaching
	Cint			Methodology
		First Aid - important		
1	I	rules of first aid, first aid	A Textbook of	Chalk and
		box, cuts and abrasion.	Pharmaceutical	board
			Chemistry	
			Dr. Jayashree	
			Ghosh	
		Bruises, bleeding,		
2	I	fractures, burns and	A Textbook of	Chalk and board
		poisonous bites.	Pharmaceutical	
			Chemistry	
			Dr. Jayashree	
			Ghosh	

		Detection of		
3	I	hallucinogens, poisons	A Textbook of	Chalk and board
		and antidotes for	Pharmaceutical	
		poisoning.	Chemistry	
			Dr. Jayashree	
			Ghosh	
4	II	Common Medicines -	Fundamental	Chalk and board
		analgesics, antipyretics	Concepts of	
		and anti-inflammatory	Applied	
		agents.	Chemistry	
			Dr. Jayashree	
			Ghosh	
5	II	Antiseptics, antibiotics	Fundamental	Chalk and board
		and antidepressants.	Concepts of	
			Applied	
			Chemistry	
			Dr. Jayashree	
			Ghosh	
6	II	Disinfectants, sedatives,	Fundamental	Chalk and board
		anesthetics – definition,	Concepts of	
		examples, uses and side	Applied	
		effects.	Chemistry	
			Dr. Jayashree	
			Ghosh	
7	III	Indian medicinal plants -	Indian Medicinal	Chalk and board
		medicinal properties of	plants	
		neem, keezhanelli,	An Illustrated	
		sembaruthy, thulsi and	Dictionary	
		thoothuvalai.	C. P. Khare	

8	III	Nithya kalyani, rose, turmeric, garlic, senavu,	Indian Medicinal plants	Chalk and board
		nerunji and curry leaves	An Illustrated	
			Dictionary	
			C. P. Khare	
9	III	Perandai, thipili,	Indian Medicinal	Chalk and board
		vallarai, karunjeeragam	plants	
		and flax seeds.	An Illustrated	
			Dictionary	
			C. P. Khare	
10	IV	Medicaments in	Practical	Chalk and board
		formulations - aerosol	Pharmaceutical	
		inhalations, capsules,	Chemistry	
		creams and emulsions.	A.H.Beckett and	
			J.B.Stenlake	
11	IV	Eye drops, injections,	Practical	Chalk and board
		ointments and	Pharmaceutical	
		suppositories.	Chemistry	
			A.H.Beckett and	
			J.B.Stenlake	
12	IV	Tablets, tonic, syrup and	Practical	Chalk and board
		hydrogels – definition,	Pharmaceutical	
		examples and uses.	Chemistry	
			A.H.Beckett and	
			J.B.Stenlake	
13	V	Medical applications of	Biomaterials	Chalk and board
		polymers – biomaterials	Sujatha V. Bhat	
		- definition and		
		characteristics, ceramic		

		implants and metallic		
		implants.		
14	V	Biomedical applications	Biomaterials	Chalk and board
		of polyurethane,	Sujatha V. Bhat	
		polydimethylsiloxane,		
		polyalkylsulphone and		
		polymethylmethacrylate.		
15	V	Acrylic hydro gels, poly	Biomaterials	Chalk and board
		vinyl chloride,	Sujatha V. Bhat	
		polypropylene,		
		polyethylene and		
		polylactic acid.		

UACHA316 – Allied Chemistry I

Week	Unit	Portions to be covered	Reference	Teaching Methodology
		Aromatic compounds-	Advanced	
1	I	aromaticity and	Organic	Chalk and
		Huckel's rule	Chemistry	board
			B.S Bahl and	
			Arun Bahl	
		Examples of benzenoid	Advanced	
2	I	and nonbenzenoid	Organic	Chalk and board
		compounds.	Chemistry	
		benzene, naphthalene,	B.S Bahl and	
		anthracene, pyridine and	Arun Bahl	
		quinoline, azulene and		
		ferrocene		

			Advanced	
3	I	Preparation, properties	Organic	Chalk and board
		and uses of naphthalene.	Chemistry	
			B.S Bahl and	
			Arun Bahl	
4	I	Heterocyclic	Advanced	Chalk and board
		compounds-preparation,	Organic	
		properties and uses of	Chemistry	
		furan, thiophene and	B.S Bahl and	
		pyrrole.	Arun Bahl	
5	I	Electrophilic	Advanced	Chalk and board
		substitution in benzene-	Organic	
		mechanism of nitration,	Chemistry	
		halogenation, alkylation,	B.S Bahl and	
		acylation and	Arun Bahl	
		sulphonation		
6	III	Polymer chemistry-	Fundamental	Chalk and board
		classification of	Concepts of	
		polymers	Applied	
			Chemistry	
			Dr. Jayashree	
			Ghosh	
7	III	Natural and synthetic	Fundamental	Chalk and board
		rubbers.	Concepts of	
			Applied	
			Chemistry	
			Dr. Jayashree	
			Ghosh	
8	III	Preparation and uses of	Fundamental	Chalk and board
		nylon 6, 6 and terylene	Concepts of	

			Applied	
			Chemistry	
			Dr. Jayashree	
			Ghosh	
9	III	Preparation and uses of	Fundamental	Chalk and board
		polyethylene	Concepts of	
			Applied	
			Chemistry	
			Dr. Jayashree	
			Ghosh	
10	III	Preparation and uses of	Fundamental	Chalk and board
		PVC	Concepts of	
			Applied	
			Chemistry	
			Dr. Jayashree	
			Ghosh	
11	III	Protein fibres – chemical	Fundamental	Chalk and board
		composition and	Concepts of	
		properties of wool and	Applied	
		silk	Chemistry	
			Dr. Jayashree	
			Ghosh	
12	V	Explosives – TNT ,	Textbook of	Chalk and board
		nitroglycerine and	Allied Chemistry	
		Dynamite	V.Veeraiyan and	
			A.N.S.	
			Vasudevan	
13	V	Industrial chemistry-fuel	Textbook of	Chalk and board
		gases - natural gas, water	Allied Chemistry	
		gas, semi water gas,		
		carburetted water gas,		

		oil gos and producer gos	V Vooroivon and	
		oil gas and producer gas	V.Veeraiyan and	
			A.N.S.	
			Vasudevan	
14	V	Cement-composition,	Textbook of	Chalk and board
		setting of cement and	Allied Chemistry	
		uses,	V.Veeraiyan and	
			A.N.S.	
			Vasudevan	
15	V	Types of glasses.	Textbook of	Chalk and board
			Allied Chemistry	
			V.Veeraiyan and	
			A.N.S.	
			Vasudevan	

PCCHB15 – STRUCTURAL INORGANIC CHEMISTRY

	Portions to be covered	Deference	Teaching
Unit	1 ortions to be covered	Keiei elice	Methodology
I	Acids and bases, proton	Inorganic	Chalk and board
	transfer equilibria in	Chemistry	
	water – solvent leveling	D.F.Shrivers,	
	effects, aqua acids,	P.W.Atkins and	
	periodic trends in aqua	C.H. Langford	
	acids – simple oxo acids		
	– anhydrous oxides –		
	polyoxo compound		
	formation.		
Ι	Lewis acid - base	Inorganic	Chalk and board
	concepts, Hard and soft	Chemistry	
	acids and bases - group	D.F.Shrivers,	
	characteristics of Lewis	P.W.Atkins and	
	acids, Lux - Flood theory	C.H. Langford	
	of acids and bases and		
	Usanovich acids and		
	bases.		
I	Super acids and	Inorganic	Chalk and board
	superbases, nonaqueous	Chemistry	
	solvents, classification,	D.F.Shrivers,	
	protic and aprotic	P.W.Atkins and	
	solvents, heterogeneous	C.H. Langford	
	acids and bases -		
	symbiosis and proton		
	sponges.		
	I	I Acids and bases, proton transfer equilibria in water – solvent leveling effects, aqua acids, periodic trends in aqua acids – simple oxo acids – anhydrous oxides – polyoxo compound formation. I Lewis acid - base concepts, Hard and soft acids and bases - group characteristics of Lewis acids, Lux - Flood theory of acids and bases and Usanovich acids and bases. I Super acids and superbases, nonaqueous solvents, classification, protic and aprotic solvents, heterogeneous acids and bases - symbiosis and proton	Inorganic Transfer equilibria in water – solvent leveling effects, aqua acids, periodic trends in aqua acids – simple oxo acids – anhydrous oxides – polyoxo compound formation. I Lewis acid – base concepts, Hard and soft acids and bases – group characteristics of Lewis acids, Lux - Flood theory of acids and bases and Usanovich acids and bases and Usanovich acids and bases. I Super acids and soft superbases, nonaqueous solvents, classification, protic and aprotic solvents, heterogeneous acids and bases – symbiosis and proton I Inorganic Chemistry D.F.Shrivers, P.W.Atkins and C.H. Langford Chemistry D.F.Shrivers, P.W.Atkins and C.H. Langford

4	II	Structure of complex	Inorganic	Chalk and board
		solids -layered structures,	Chemistry,	
		conducting ionic solids,	Principles,	
		graphite - solids held	Structure and	
		together by covalent	Reactivity	
		bonding, Diamond –	J.E. Huheey	
		Madelung constants,		
		Imperfections in crystals		
		– stoichiometric defects -		
		Schottky, controlled		
		valency, F-center and		
		Frenkel defect.		
5	II	Non-stoichiometric	Inorganic	Chalk and board
3	11	defects - metal excess	Chemistry,	Chaik and board
			_	
		defect, metal deficient	Principles,	
		defect, impurity defect.	Structure and	
		Band theory of solids,	Reactivity	
		Intrinsic and extrinsic	J.E. Huheey	
		semiconductors,		
		piezoelectric and		
		pyroelectric crystals,		
		Superconductivity –		
		Meissner effect, critical		
		temperature and Critical		
		magnetic Field.		
6	II	BCS theory, Type I and	Inorganic	Chalk and board
		Type II superconductor,	Chemistry	
		ternary Oxides, structure	D.F.Shrivers,	
		of 123 oxides (YBa-Cu-	P.W.Atkins and	
		O) and applications of		
		- , or		

		high temperature		
		superconducting		
		materials.		
7	III	_	Inorganic	Chalk and board
		solids, unit cell and	Chemistry	
		crystal structures, close		
		packing of spheres and	P.W.Atkins and	
		holes in closed packed	C.H. Langford	
		structures.		
8	III	Structure of metals and	Inorganic	Chalk and board
		alloys, non closed packed	Chemistry	
		structures,	D.F.Shrivers,	
		atomic radii of metals,	P.W.Atkins and	
		polytypism,	C.H. Langford	
		polymorphism of metals.		
9	III	Alloys - substitutional	Inorganic	Chalk and board
		solid solutions,	Chemistry	
		interstitial solid solutions	D.F.Shrivers,	
		of non metals ,	P.W.Atkins and	
		intermetallic	C.H. Langford	
		compounds,		
		characteristic and		
		structure of ionic solids,		
		binary phases (AX and		
		AX ₂), ternary phases		
		(ABO ₃ and AB ₂ O ₄).		

10	IV	Structure and bonding I -	Advanced	Chalk and board
		polyacids - isopolyacids	Inorganic	
		and heteropolyacids of	Chemistry	
		molybdenum and	F.A. Cotton and	
		tungsten, Dawson and	G. Wilkinson	
		Keggins structure of poly		
		acids, heteropolyanions		
		and heteropoly blues.		
11	IV	Inorganic polymers -	Inorganic	Chalk and board
		Silicates, structures,	Chemistry,	
		properties, correlation	Principles,	
		and applications,	Structure and	
		molecular sieves,	Reactivity	
		feldspar, zeolites and	J.E. Huheey	
		ultramarines and its		
		application.		
12	IV	Polysulphur – nitrogen	Inorganic	Chalk and board
		compounds, structure	Chemistry,	
		and bonding in	Principles,	
		tetrasulphur tetranitride,	Structure and	
		polythiazyl and S_xS_y	Reactivity	
		compounds, and	J.E. Huheey	
		polyorgano		
		phosphazenes.		
		1		

13	V	Structure and Bonding II	Advanced	Chalk and board
		- boron hydrides,	Inorganic	
		introduction,	Chemistry	
		classification of boranes,	F.A. Cotton and	
		diborane, tetra borane,	G. Wilkinson	
		pentaborane, hexaborane		
		and decaborane,		
		polyhedral boranes -		
		Wade's rule - closo, nido		
		and arachno structures		
		and hydroboration.		
14	V	Carboranes - closo, nido	Advanced	Chalk and board
14	v	and arachno structures of	Inorganic	Chaik and board
		carboranes,	Chemistry	
		metallocarboranes closo,	F.A. Cotton and	
		nido and arachno,	G. Wilkinson	
		structures of carboranes.		
15	V	Structure and bonding of		Chalk and board
		boronitrides and metal	Inorganic	
		clusters- chemistry of	Chemistry	
		low molecularity metal	F.A. Cotton and	
		clusters (upto trinuclear	G. Wilkinson	
		metal clusters).		

EVEN SEMESTER

PCCHD15 – ORGANIC REACTIONS AND MECHANISMS

Week	Portions to be covered	Reference	Teaching Methodology
1	Unit I Oxidation by quinones, selenium dioxide, osmium tetroxide,	Reaction Mechanism in Organic Chemistry By S. M. Mukherji S. P. Singh	Chalk and Board
2	Unit I Oxidation by lead tetraacetate, formation of C-C bond in phenol coupling, acetylenic coupling.	Reactions, Rearrangements and Reagents By S. N. Sanyal	Chalk and Board
3	Unit I Oxidation by chromic acid (Jones reagent), chromium trioxide – pyridine (Sarett's reagent), DMSO-DCC (Pfitzer-Moffatt reagent).	Reaction Mechanism in Organic Chemistry By S. M. Mukherji S. P. Singh	Chalk and Board
4	Unit I Oppenauer oxidation, Dakin reaction and Swern oxidation.	Reactions, Rearrangements and Reagents By S. N. Sanyal	Chalk and Board
5	Unit III Wagner-Meerwein, Demjanov, Dienone – Phenol earrangement.	Advanced Organic Chemistry Reactions, Mechanisms and Structure By Jerry March	PPT

6	Unit III Favorski, Baeyer-Villiger, Wolf, rearrangements.	Reactions, Rearrangements and Reagents By S. N. Sanyal	PPT
7	Unit III Curtius, Lossen and Von-Richter rearrangements.	Reactions, Rearrangements and Reagents By S. N. Sanyal	PPT
8	Unit III Schmidt rearrangement. Nitrenes – Singlet and triplet nitrenes. Methods of generating nitrenes and their reactions.	Advanced Organic Chemistry Reactions, Mechanisms and Structure By Jerry March	Chalk and Board
9	Unit IV Reaction mechanisms and applications of Michael addition, Skraup and Ullmann reactions.	Reactions, Rearrangements and Reagents By S. N. Sanyal	Chalk and Board
10	Unit IV Reaction mechanisms and applications of Hunsdicker, Nef and HVZ.	Reactions, Rearrangements and Reagents By S. N. Sanyal	Chalk and Board
11	Unit V Photochemical excitation - fate of the excited molecules - study of photo chemical reaction of ketone. Norrish type I and Norrish type II reaction.	Reaction Mechanism in Organic Chemistry By S. M. Mukherji S. P. Singh	Chalk and Board

12	Unit V Photocyclo addition – Paterno - Buchi reduction - photo cycloaddition of α-β unsaturated ketones- di-pi methane rearrangement.	Reaction Mechanism in Organic Chemistry By S. M. Mukherji S. P. Singh	Chalk and Board
13	Unit V Pericyclic reactions - classification, orbital symmetry - Woodward Hoffmann rules. Analysis of electrocyclic reaction -Types - 4n and 4n + 2 systems	Reaction Mechanism in Organic Chemistry By S. M. Mukherji S. P. Singh	Chalk and Board
14	Unit V Cyclo addition – Types – [2+2] and [4+2] cycloaddition reactions. Sigmatropic reactions- 1, n Hydrogen shift, Cope rearrangement and Claisen rearrangement.	Reaction Mechanism in Organic Chemistry By S. M. Mukherji S. P. Singh	Chalk and Board
15	Unit V Correlation diagrams for butadiene - cyclobutene system.	Reaction Mechanism in Organic Chemistry By S. M. Mukherji S. P. Singh	Chalk and Board

PCCHM15 – NATURAL PRODUCTS AND BIOORGANIC CHEMISTRY

Week	Unit	Portions to be covered	Reference	Teaching Methodology
1	V	Nucleic acid and types	Enzyme Chemistry Hermann Dugas	Chalk and board
2	V	Enzyme Chemistry- Enzyme mechanism of alpha chymotrypsin.	Enzyme Chemistry Hermann Dugas	Chalk and board
3	V	Wobbles Hypothesis	Enzyme Chemistry Hermann Dugas	Chalk and board
4	V	Coenzyme chemistry - Prosthetic groups and apo enzymes	Enzyme Chemistry Hermann Dugas	Chalk and board
5	V	Gene transcription and translation	Enzyme Chemistry Hermann Dugas	Chalk and board
6	V	Coenzyme thiamine pyrophosphate	Enzyme Chemistry Hermann Dugas	Chalk and board

7	V	Coenzyme thiamine	Enzyme	Chalk
		pyrophosphate.	Chemistry Hermann	and board
			Dugas	bourd
8	V	Enzymes in synthetic	Enzyme Chemistry	Chalk
		organic chemistry.	Hermann Dugas	and
			· ·	board
9	V	Structure, biological	Enzyme Chemistry	Chalk
		function and mechanism	Hermann Dugas	and
		of reactions catalysed by		board
		pyridoxal phosphate		
		pyridoxar phosphate		
10	V	Structure, biological	Enzyme Chemistry	Chalk
		function and mechanism	Hermann Dugas	and board
		of reactions catalysed by		bourd
		coenzyme A		
11	V	Structure, biological	Enzyme Chemistry	Chalk
		function and mechanism	Hermann Dugas	and board
		of reactions catalysed		board
		thiamine pyrophosphate.		
12	V	Structure and Biological	Enzyme Chemistry	Chalk
		functions of NADD	Hermann Dugas	and
		functions of NADP	-	board
13	V	Structure and Biological	Enzyme	Chalk
		functions FAD.	Chemistry Hermann	and
			Dugas	board
14	V	Structure and Biological	Enzyme Chemistry	Chalk
		functions of lipoic acid.	Hermann Dugas	and
				board
15	V	Structure and Biological	Enzyme	Chalk
		functions Vitamin B_{12} .	Chemistry Hermann Dugas	and
			,	board

USCHB416 - MEDICINAL CHEMISTRY

Week	Unit	Portions to be covered	Reference	Teaching Methodology
1	I	First Aid - important rules of first aid, first aid box, cuts and abrasion.	A Textbook of Pharmaceutical Chemistry Dr. Jayashree Ghosh	Chalk and board
2	I	Bruises, bleeding, fractures, burns and poisonous bites.	A Textbook of Pharmaceutical Chemistry Dr. Jayashree Ghosh	Chalk and board
3	I	Detection of hallucinogens, poisons and antidotes for poisoning.	A Textbook of Pharmaceutical Chemistry Dr. Jayashree Ghosh	Chalk and board
4	II	Common Medicines - analgesics, antipyretics and anti-inflammatory agents.	Fundamental Concepts of Applied Chemistry Dr. Jayashree Ghosh	Chalk and board

5	II	Antiseptics, antibiotics and antidepressants.	Fundamental Concepts of Applied Chemistry Dr. Jayashree Ghosh	Chalk and board
6	II	Disinfectants, sedatives, anesthetics – definition, examples, uses and side effects.	Fundamental Concepts of Applied Chemistry Dr. Jayashree Ghosh	Chalk and board
7	III	Indian medicinal plants - medicinal properties of neem, keezhanelli, sembaruthy, thulsi and thoothuvalai.	Indian Medicinal plants An Illustrated Dictionary C. P. Khare	Chalk and board
8	III	Nithya kalyani, rose, turmeric, garlic, senavu, nerunji and curry leaves	Indian Medicinal plants An Illustrated Dictionary C. P. Khare	Chalk and board
9	III	Perandai, thipili, vallarai, karunjeeragam and flax seeds.	Indian Medicinal plants An Illustrated Dictionary C. P. Khare	Chalk and board

10	IV	Medicaments in formulations - aerosol inhalations, capsules, creams and emulsions.	Practical Pharmaceutical Chemistry A.H.Beckett and J.B.Stenlake	Chalk and board
11	IV	Eye drops, injections, ointments and suppositories.	Practical Pharmaceutical Chemistry A.H.Beckett and J.B.Stenlake	Chalk and board
12	IV	Tablets, tonic, syrup and hydrogels – definition, examples and uses.	Practical Pharmaceutical Chemistry A.H.Beckett and J.B.Stenlake	Chalk and board
13	V	Medical applications of polymers – biomaterials - definition and characteristics, ceramic implants and metallic implants.	Biomaterials Sujatha V. Bhat	Chalk and board
14	V	Biomedical applications of polyurethane, polydimethylsiloxane, polyalkylsulphone and polymethylmethacrylate.	Biomaterials Sujatha V. Bhat	Chalk and board
15	V	Acrylic hydro gels, poly vinyl chloride, polypropylene, polyethylene and polylactic acid.	Biomaterials Sujatha V. Bhat	Chalk and board

USCHD615 – SBE: FOOD CHEMISTRY

Week	Unit	Portions to be covered	Reference	Teaching methodolo gy
1	I	Food and food adulteration, food types, advantages and disadvantages.	Food Science By B.Srilakshmi	Chalk and board
2	I	Food adulteration- adulteration in food grains, milk, butter, ghee, ice creams and cakes, pepper, turmeric,	Food Science By B.Srilakshmi	Chalk and board
3	I	Food adulteration in chilli powder, edible oils, coffee and tea powder, fruits and vegetables. Detection of adulterants by simple analytical techniques.	Food Science By B.Srilakshmi	Chalk and board
4	II	Food additives - definition, structure, advantages and disadvantages of artificial sweeteners -saccharin, cyclamate and aspartate	Food Chemistry By Lillian Hoagland Meyer	PPT

5	II	Food flavours-esters, aldehydes and heterocyclic compounds Food colours, emulsifying agents, preservatives and leavening agents- baking powder, baking soda and yeast	Food Chemistry By Lillian Hoagland Meyer	PPT
6	II	Antioxidants- propyl gallate, butylated hydroxyl anisole and butylated hydroxyl toluene.	Food Chemistry By Lillian Hoagland Meyer	Chalk and board
7	III	Food poison and beverages - food poisons- pesticides and chemical poisons.	Food Chemistry By Seema Yadav	Chalk and board
8	III	First aid for poison consumed victims. Beverages - soft drinks- soda, carbonated drinks, fruit juices,	Food Chemistry By Seema Yadav	Chalk and board
9	III	Alcoholic beverages- examples and composition. Addiction to alcohol- diseases of liver. Deaddiction measures.	Food Science By B.Srilakshmi	Chalk and board
10	IV	Edible oils - fats, oils, sources of oils, saturated and unsaturated fats, importance of MUFA and PUFA,	Food Science By B.Srilakshmi	Chalk and board

11	IV	Iodine value, RM value, harmful effects of trans fat, saponification values and their significance.	Food Science By B.Srilakshmi	Chalk and board
12	IV	Rancidity- types, hydrolytic and oxidative, test for rancidity, prevention of rancidity.	Food Science By B.Srilakshmi	Chalk and board
13	V	Vegetables and Fruits - classification, composition, nutritive value of green leafy vegetables, roots and tubers, other vegetables.	Food Science By B.Srilakshmi	Chalk and board
14	V	Pigments- water insoluble and water soluble pigments. Vegetable cookery-preparation, changes during cooking, loss of nutrients during cooking.	Food Science By B.Srilakshmi	Chalk and board
15	V	Fruits- classification, composition, ripening of fruits, chemical fruit ripening, storage of fruits	Food Science By B.Srilakshmi	Chalk and board

Auxilium College (Autonomous), Gandhi Nagar, Vellore – 632 006.

Lesson Plan for the year 2018 -2019

ODD SEMESTER

UCCHA16 – General Chemistry - I

Week	Unit	Portions to be covered	Reference	Platform (LMS)
1	I	Periodicity of properties – definition.	R.D.Madan Modern Inorganic Chemistry	Chalk and Board
2	I	Factors affecting and periodicity of Atomic radii.	R.D.Madan Modern Inorganic Chemistry	Chalk andBoard
3	I	Factors affecting and periodicity of ionic radii	R.D.Madan Modern Inorganic Chemistry	Chalk andBoard
4	I	Factors affecting and periodicity of and ionization potential.	R.D.Madan Modern Inorganic Chemistry	Chalk andBoard
5	I	Factors affecting and periodicity of electron affinity.	R.D.Madan Modern Inorganic Chemistry	Chalk andBoard
6	I	Factors affecting and periodicity of electronegativity.	R.D.Madan Modern Inorganic Chemistry	Chalk andBoard
7	I	Determination of electronegativity – Pauling's scale and Mulliken's scale.	R.D.Madan Modern Inorganic Chemistry	Chalk andBoard

8	V	Heisenberg's uncertainty principle	B. R. Puri, L. R	Chalk andBoard
			Sharma and M.S	
			Pathania,	
			Principles of	
			Physical	
			Chemistry	
9	V	1	B. R. Puri, L. R	Chalk andBoard
		derivation)	Sharma and M.S	
			Pathania,	
			Principles of	
			Physical	
			Chemistry	

III - B.Sc. Chemistry $\,$ - Semester V

SBE: USCHC516- SMALL SCALE CHEMISTRY

Week	Unit	Portions to be covered	Reference	Platform (LMS)
1	I	Objectives and characteristics of small-scale industries-Types of SSI-Roles of SSI in Indian economy-problems of SSI –	Dr. V. Balu, Entrepreneurship and Small Business Promotion.	Chalk and Board
2	I	Steps in starting SSI-Laws for SSI – Finance Management-Quality control-definition and advantages-	Dr. V. Balu, Entrepreneurship and Small Business Promotion.	Chalk and Board
3	I	Marketing and branding- Advertising definition, objectives, advertising media.	Dr. V. Balu, Entrepreneurship and Small Business Promotion,	Chalk and Board
4	II	Soaps – definition- main fatty and non- fatty raw materials -Types of soaps-manufacture of laundry soap and bathing soap.	B.K.Sharma, Industrial Chemistry	Chalk and Board
5	II	Mechanism of cleansing action of soap. Composition, preparation and advantages of herbal soaps.	B.K.Sharma, Industrial Chemistry	Chalk and Board
6	II	Detergents-Classification of surfactive agents- manufacture of detergents. Shampoo-Composition and manufacture of egg and herbal shampoo.	B.K.Sharma, Industrial Chemistry	Chalk and Board
7	III	Cosmetics –definition, kinds of cosmetics.	B.K.Sharma, Industrial Chemistry	Chalk and Board
8	III	Preparation of face powder, face cream and lipstick.	B.K.Sharma, Industrial Chemistry	Chalk and Board
9	III	Perfumes- definition, essential ingredients in perfumes, classification of essential oils- preparation of perfumes.	B.K.Sharma, Industrial Chemistry	Chalk and Board
10	IV	Camphor – production, biosynthesis and applications. Bleaching powder - preparation, properties and uses.	B.K.Sharma, Industrial Chemistry	Chalk and Board
11	IV	Biogas- composition, production and uses.	B.K.Sharma, Industrial Chemistry	Chalk and Board

12	IV	Asofoetida - composition, cultivation,	B.K.Sharma,	Chalk and
		manufactures and uses. Composition and	Industrial	Board
		manufacture of safety matches and agarbattis.	Chemistry	
13	V	Recycling of synthetic organic polymers –	B.K.Sharma,	Chalk and
		applications of PET, PVC, HDPE, and	Industrial	Board
		polystyrene.	Chemistry	
14	V	Reverse osmosis of water - production and	B.K.Sharma,	Chalk and
		applications. Coconut oil – manufacture by dry	Industrial	Board
		and wet processes and uses.	Chemistry	
15	V	Vulcanization of rubber, making an eraser.	B.K.Sharma,	Chalk and
		Pencils - forms of graphite, adhesion and	Industrial	Board
		lengthwise graphitization method and uses.	Chemistry	

II - B.Sc./B.A/B.Com/BBA - Semester V

NME: UGCHA517- FOOD AND NUTRITION CHEMISTRY

Week	Unit	Portions to be covered	Reference	Platform
				(LMS)
1	Ĭ	Nutrition and Health - concept, classification of foods. Nutrients - macro and micro nutrients.	Shrinandan Bansal, Food and Nutrition, 2nd Edition, AI.T.B.S Publishers, India, 2010.	Chalk and Board
2	I	Carbohydrates - sources, classification, functions, deficiency diseases, energy requirements, blood sugar level.	Food and Nutrition, 2nd Edition, AI.T.B.S Publishers, India, 2010.	Chalk and Board
3	I	Carbohydrates metabolism - Glycolysis, Glyconeogenesis, Glycogenolysis.	AmbigaShanmuga m, Fundamentals of Biochemistry for Medical Students, 8th Edition, 2016.	Chalk and Board
4	II	Proteins-sources, classification, functions.	Shrinandan Bansal, Food and Nutrition, 2nd Edition, AI.T.B.S Publishers, India, 2010.	Chalk and Board
5	II	Proteins - deficiency diseases, energy requirements and metabolism.	Shrinandan Bansal, Food and Nutrition, 2nd Edition, AI.T.B.S Publishers, India, 2010.	Chalk and Board
6	II	Fats - Sources, classification, functions, deficiency diseases, energy requirements and metabolism.	Shrinandan Bansal, Food and Nutrition, 2nd Edition, AI.T.B.S Publishers, India, 2010.	Chalk and Board
7	III	Vitamins— classification, difference between fat soluble and water soluble vitamins. Fat soluble vitamins (A, D, E and K),	· ·	Chalk and Board

8	III	requirements.	Food and Nutrition, 2 _{nd} Edition, AI.T.B.S Publishers, India, 2010.	Chalk and Board
9	III		Shrinandan Bansal, Food and Nutrition, 2nd Edition, AI.T.B.S Publishers, India, 2010.	Chalk and Board
10	IV	Minerals – classification, major elements (Ca, P, Na, K, Fe, Mg, I and F)	Shrinandan Bansal, Food and Nutrition, 2nd Edition, AI.T.B.S Publishers, India, 2010.	Chalk and Board
11	IV	Trace elements (Zn, Cu, Co, Se, Mo) - sources, functions, deficiency diseases and recommended requirements.		Chalk and Board
12	IV	Balanced diet - Recommended diet for adult - Indian men and women. Diet in pregnancy and lactation.	Shrinandan Bansal, Food and Nutrition, 2nd Edition, AI.T.B.S Publishers, India, 2010.	Chalk and Board
13	V	Vegetables – Nutritive value of green leafy vegetables, roots and tubers. Vegetable cookery (preliminary preparation, changes during cooking, loss of nutrients during cooking).	B.Srilakshmi, Food Sciences, 5th	Chalk and Board
14	V	Fruits – Nutritive value of fruits, pigments, water, cellulose and pectic substances, flavour constituents, polyphenols, bitterness in fruits.	B.Srilakshmi, Food Sciences, 5th Edition, New Age International Publishers, 2010.	Chalk and Board
15	V	Ripening of fruits – chemical ripening. Storage of fruits. Antioxidants - antioxidant properties of vegetables and fruits.		Chalk and Board

II M.Sc. Chemistry – Semester III

PCCHK15 -MOLECULAR SPECTROSCOPY

Week	Unit	Portions to be covered	Reference	Platform
				(LMS)
1	I	Ultra violet spectroscopy - types of electronic transitions — chromophore and auxochrome - factors influencing positions and intensity of absorption bands -	Dr.H.Kaur, Spectroscopy William Kemp, Organic Spectroscopy R.M. Silverstein, G.d. Bassler and Monsu, Spectrometric Identification of Organic Compounds	Chalk and Board
2	I	Absorption spectra of dienes, polyenes and alpha, beta unsaturated carbonyl compounds-Woodward Fischer rule –	Dr.H.Kaur, Spectroscopy William Kemp, Organic Spectroscopy R.M. Silverstein, G.d. Bassler and Monsu, Spectrometric Identification of Organic Compounds	Chalk and Board
3	I	The effect of steric hindrance to coplanarity – charge transfer spectral absorption.	Dr.H.Kaur, Spectroscopy William Kemp, Organic Spectroscopy R.M. Silverstein, G.d. Bassler and Monsu, Spectrometric Identification of Organic Compounds	Chalk and Board
4	I	IR Spectroscopy - vibrational frequencies and factors affecting them - identification of functional groups- intra and inter molecular hydrogen bonding -	Dr.H.Kaur, Spectroscopy William Kemp, Organic Spectroscopy R.M. Silverstein, G.d. Bassler and Monsu, Spectrometric Identification of Organic Compounds	Chalk and Board
5	I	Applications of finger print region – far IR region	Dr.H.Kaur, Spectroscopy William Kemp, Organic Spectroscopy	Chalk and Board

	ı			
			R.M. Silverstein, G.d.	
			Bassler and Monsu,	
			Spectrometric	
			Identification of	
			Organic Compounds	
6	I	Metal ligand stretching vibrations for metal	Dr.H.Kaur,	Chalk and
0	1	carbonyls, sulphates, cyanides, nitro and	Spectroscopy	
		nitrito complexes.		Board
		intrito compiexes.	Ι,	
			Organic Spectroscopy	
			R.M. Silverstein, G.d.	
			Bassler and Monsu,	
			Spectrometric	
			Identification of Organic	
7	TT	Manager Division	Compounds Dr.H.Kaur,	Chalk and
/	II	Mass spectroscopy – Principles - measurement	· ·	
		techniques - (E ₁ , C ₁ , ED, FAB, SIMS)	Spectroscopy	Board
			William Kemp,	
			Organic Spectroscopy	
			R.M. Silverstein, G.d.	
			Bassler and Monsu,	
			Spectrometric	
			Identification of Organic	
			Compounds	C1 11 1
8	II	Presentation of spectral data - molecular ions,	Dr.H.Kaur,	Chalk and
		isotope ions - Nitrogen rule and ring rule,	Spectroscopy	Board
		fragment ions of odd and even electron types	William Kemp,	
			Organic Spectroscopy	
			R.M. Silverstein, G.d.	
			Bassler and Monsu,	
			Spectrometric	
			Identification of Organic	
-			Compounds	~
9	II	Rearrangement ions-factors	Dr.H.Kaur,	Chalk and
		affecting cleavage patterns – simple	Spectroscopy	Board
		and multi center fragmentation	William Kemp,	
			Organic Spectroscopy	
			R.M. Silverstein, G.d.	
			Bassler and Monsu,	
			Spectrometric	
			Identification of Organic	
10	***	M. Y. CC	Compounds	C1 11 1
10	II	McLafferty rearrangement -Mass spectra	Dr.H.Kaur,	Chalk and
		of phenols, aldehyde, lactones, nitro	Spectroscopy	Board
		compounds,	William Kemp,	
			Organic Spectroscopy	
			R.M. Silverstein, G.d.	
			Bassler and Monsu,	
			Spectrometric	
			Identification of Organic	
			Compounds	

11	II	McLafferty rearrangement -Mass spectra of	Dr.H.Kaur,	Chalk and
		esters, acetals and ketals, hetero aromatic	Spectroscopy	Board
		compounds and sulphides.	William Kemp,	2000
			Organic Spectroscopy	
			R.M. Silverstein, G.d.	
			Bassler and Monsu,	
			Spectrometric	
			Identification of Organic	
			Compounds	
12	II	Principle and introduction to GC-MS.	Dr.H.Kaur,	Chalk and
			Spectroscopy	Board
			William Kemp,	
			Organic Spectroscopy	
			R.M. Silverstein, G.d.	
			Bassler and Monsu,	
			Spectrometric	
			Identification of	
			Organic Compounds	
13	III	NMR spectroscopy - Introduction - nuclear	Dr.H.Kaur,	Chalk and
		spin – Larmor frequency – relaxation process –	Spectroscopy	Board
		chemical shift – shielding constants –	William Kemp,	
			Organic Spectroscopy	
			R.M. Silverstein, G.d.	
			Bassler and Monsu,	
			Spectrometric	
			Identification of	
			Organic Compounds	
14	III	Ring current and aromaticity – shifts for 1H and		Chalk and
		13C, spin spin interaction – nuclear magnetic	Spectroscopy	Board
		double resonance – nuclear overhauser effect.	William Kemp,	
			Organic Spectroscopy	
			R.M. Silverstein, G.d.	
			Bassler and Monsu,	
			Spectrometric	
			Identification of	
			Organic Compounds	
15	III	Application of ¹ H NMR, ¹³ C NMR, ³¹ P NMR,		Chalk and
		¹⁹ F NMR and their applications to inorganic	~ F · · · · · · · · · · · · · · · · · ·	Board
		systems.	William Kemp,	
			Organic Spectroscopy	
			R.M. Silverstein, G.d.	
			Bassler and Monsu,	
			Spectrometric	
			Identification of	
			Organic Compounds	

Auxilium College (Autonomous), Gandhi Nagar, Vellore – 632006.

Lesson Plan for the year 2018- 2019

EVEN SEMESTER – II/IV

PCCHD15 – ORGANIC REACTIONS AND MECHANISMS

Week / Date	No of Hours	Units	Topics	Teaching Platform	Learning Resources
I	1	2	Catalytic reduction – reduction by metals (Cu, Pd, Ni),	Chalk and Board	S.M. Mukherji and S.P. Singh, Organic Reaction Mechanism
II	1	2	Wolf- Kishner reduction and its modification, Clemmensen reduction,	Chalk andBoard	S.M. Mukherji and S.P. Singh, Organic Reaction Mechanism
III	1	2	Birch, MPV Reduction.	Chalk andBoard	S.M. Mukherji and S.P. Singh, Organic Reaction Mechanism
IV	1	2	Reduction with LiAlH ₄ , NaBH ₄ ,	Chalk andBoard	S.M. Mukherji and S.P. Singh, Organic Reaction Mechanism
V	1	2	Reduction with tritertiary butoxyaluminium hydride, sodium cyanoborohydride,	Chalk andBoard	S.M. Mukherji and S.P. Singh, Organic Reaction Mechanism
VI	1	2	selectivity in reduction of 4-t- butylcyclohexanone using selected hydrides.	Chalk andBoard	S.M. Mukherji and S.P. Singh, Organic Reaction Mechanism
VII	1	4	Reaction mechanism and applications – Barton.	Chalk andBoard	Sanyal S.N.Bharathi Bhawan, Reactions, Rearrangements and Reagents
VIII	1	4	Reaction mechanism and applications – Simmon-Smith	Chalk andBoard	Sanyal S.N.Bharathi Bhawan, Reactions, Rearrangements and Reagents
IX	1	4	Reaction mechanism and applications – Mannich	Chalk andBoard	Sanyal S.N.Bharathi Bhawan, Reactions, Rearrangements and Reagents
X	1	4	Reaction mechanism and applications – Stobbe	Chalk andBoard	Sanyal S.N.Bharathi Bhawan, Reactions, Rearrangements and Reagents
XI	1	4	Reaction mechanism and applications – Darzen	Chalk andBoard	Sanyal S.N.Bharathi Bhawan, Reactions, Rearrangements and Reagents
XII	1	4	Reaction mechanism and applications – Chichibabin	Chalk andBoard	Sanyal S.N.Bharathi Bhawan, Reactions, Rearrangements and Reagents

II M.Sc. Chemistry Sem IV PCCHM15 – NATURAL PRODUCTS AND BIOORGANIC CHEMISTRY

Week / Date	No of Hours	Units	Topics	Teaching Platform	Learning Resources
I	2	1	Synthesis and reactions of Imidazole, Oxazole, thiazole, flavones,	Chalk and Board	I.L. Finar, Organic Chemistry.
II	2	1	Synthesis and reactions of isoflavones, anthocyanins.	Chalk andBoard	I.L. Finar, Organic Chemistry.
III	2	1	Synthesis and reactions of pyrimidines (cytosine and uracil only)	Chalk andBoard	I.L. Finar, Organic Chemistry.
IV	2	1	Synthesis and reactions of purines (adenines, guanine only)	Chalk andBoard	I.L. Finar, Organic Chemistry.
V	2	1	Synthesis of Vitamin A (Reformatsky and Wittig reaction methods only)	Chalk andBoard	I.L. Finar, Organic Chemistry.
VI	2	1	Total synthesis of Morphine, Quinine and Papaverine.	Chalk andBoard	I.L. Finar, Organic Chemistry.
VII	2	3	Definition, Classification, Properties- Saponification, rancidity, oxidation, hydrogenation,	Chalk andBoard	U.Satyanarayana and Chakrapani, Fundamentals of Biochemistry.
VIII	2	3	Definition, Classification, Properties- halogenations reactions – Iodine number Saponification number, Acetyl number-	Chalk andBoard	U.Satyanarayana and Chakrapani, Fundamentals of Biochemistry.
IX	2	3	Metabolism of lipids-Beta oxidation of fatty acids	Chalk andBoard	U.Satyanarayana and Chakrapani, Fundamentals of Biochemistry.
X	2	3	Biosynthesis of fatty acids	Chalk andBoard	U.Satyanarayana and Chakrapani, Fundamentals of Biochemistry.
XI	2	3	Metabolism of cholesterol	Chalk andBoard	U.Satyanarayana and Chakrapani, Fundamentals of Biochemistry.
XII	2	3	Conversion of Cholesterol to Progesterone, Oestrone and Testosterone.	Chalk andBoard	U.Satyanarayana and Chakrapani, Fundamentals of Biochemistry.

III - B.Sc./B.A/B.Com/BBA - Semester VI

NME: UGCHA617- FOOD AND NUTRITION CHEMISTRY

Week	Unit	Portions to be covered	Reference	Platform
				(LMS)
1	I	Nutrition and Health - concept, classification of foods. Nutrients - macro and micro nutrients.	Shrinandan Bansal, Food and Nutrition, 2nd Edition, AI.T.B.S Publishers, India, 2010.	Chalk and Board
2	I	Carbohydrates - sources, classification, functions, deficiency diseases, energy requirements, blood sugar level.		Chalk and Board
3	I	Carbohydrates metabolism - Glycolysis, Glyconeogenesis, Glycogenolysis.	AmbigaShanmuga m, Fundamentals of Biochemistry for Medical Students, 8th Edition, 2016.	Chalk and Board
4	II	Proteins-sources, classification, functions.	Shrinandan Bansal, Food and Nutrition, 2nd Edition, AI.T.B.S Publishers, India, 2010.	Chalk and Board
5	II	Proteins - deficiency diseases, energy requirements and metabolism.	Shrinandan Bansal, Food and Nutrition, 2nd Edition, AI.T.B.S Publishers, India, 2010.	Chalk and Board
6	II	Fats - Sources, classification, functions, deficiency diseases, energy requirements and metabolism.	Shrinandan Bansal, Food and Nutrition, 2nd Edition, AI.T.B.S Publishers, India, 2010.	Chalk and Board
7	III	Vitamins— classification, difference between fat soluble and water soluble vitamins. Fat soluble vitamins (A, D, E and K),		Chalk and Board

8	III	requirements.	Food and Nutrition, 2nd Edition, AI.T.B.S Publishers, India, 2010.	Chalk and Board
9	III		Shrinandan Bansal, Food and Nutrition, 2nd Edition, AI.T.B.S Publishers, India, 2010.	Chalk and Board
10	IV	Minerals – classification, major elements (Ca, P, Na, K, Fe, Mg, I and F)	Shrinandan Bansal, Food and Nutrition, 2nd Edition, AI.T.B.S Publishers, India, 2010.	Chalk and Board
11	IV	Trace elements (Zn, Cu, Co, Se, Mo) - sources, functions, deficiency diseases and recommended requirements.		Chalk and Board
12	IV	Balanced diet - Recommended diet for adult - Indian men and women. Diet in pregnancy and lactation.	Shrinandan Bansal, Food and Nutrition, 2nd Edition, AI.T.B.S Publishers, India, 2010.	Chalk and Board
13	V	Vegetables – Nutritive value of green leafy vegetables, roots and tubers. Vegetable cookery (preliminary preparation, changes during cooking, loss of nutrients during cooking).	B.Srilakshmi, Food Sciences, 5th	Chalk and Board
14	V	constituents, polyphenols, bitterness in fruits.	Sciences, 5th Edition, New Age International Publishers, 2010.	Chalk and Board
15	V	Ripening of fruits – chemical ripening. Storage of fruits. Antioxidants - antioxidant properties of vegetables and fruits.		Chalk and Board

AUXILIUM COLLEGE (AUTONOMOUS) VELLORE – 6.

LESSON PLAN 2018- 2019

Week / Date	Topics to be Covered	Resources
I	Introduction - basic concepts of polymer science	 Polymer Science - V. R. Gowariker Textbook of Polymer Science - W. Billmeyer
II	Classification of polymers - natural and synthetic - organic and inorganic - thermoplastic and thermosetting polymers - plastics, elastomers, fibres and liquid resins.	 Polymer Science - V. R. Gowariker Textbook of Polymer Science - W. Billmeyer
III	Linear, branched and cross-linked polymers	 Polymer Science - V. R. Gowariker Textbook of Polymer Science - W. Billmeyer
IV	Addition polymers and condensation polymers.	 Polymer Science - V. R. Gowariker Textbook of Polymer Science - W. Billmeyer
V	Mechanism and kinetics of addition polymerization - cationic polymerization.	 Polymer Science - V. R. Gowariker Textbook of Polymer Science - W. Billmeyer
VI	Mechanism and kinetics of addition polymerization - anionic polymerization.	 Polymer Science - V. R. Gowariker Textbook of Polymer Science - W. Billmeyer
VII	Mechanism of free radical polymerisation	 Polymer Science - V. R. Gowariker Textbook of Polymer Science - W. Billmeyer
VIII	Kinetics of free radical polymerisation	 Polymer Science - V. R. Gowariker Textbook of Polymer Science -

		W. Billmeyer
IX	Mechanism of condensation polymerization.	 Polymer Science - V. R. Gowariker Textbook of Polymer Science - W. Billmeyer
X	Kinetics of condensation polymerization.	 Polymer Science - V. R. Gowariker Textbook of Polymer Science - W. Billmeyer
XI	Co-ordination polymerization	 Polymer Science - V. R. Gowariker Textbook of Polymer Science - W. Billmeyer
XII	Mechanism - Ziegler Natta catalyst.	 Polymer Science - V. R. Gowariker Textbook of Polymer Science - W. Billmeyer
XIII	Electrically conducting polymers - poly acetylene - poly aniline.	Polymer Science - V. R. Gowariker
XIV	Biopolymers - natural and synthetic	Polymer Science - V. R. Gowariker
XV	polyvinyl alcohol (PVA) and polyacrylate	Polymer Science - V. R. Gowariker

Auxilium College (Autonomous), Gandhi Nagar, Vellore – 632 006.

Lesson Plan for the year 2018 - 2019

Week	Portions to be covered	Reference
1	Unit II: Alkaline earth metals - Be, Mg, Ca, Sr, Ba - occurrence, comparative study of elements and compounds- oxides, halides.	 Modern Inorganic Chemistry - R.D.Madan Textbook of Inorganic Chemistry- P.L Soni
2	Unit II: Comparative study of elements and compounds-hydroxides, sulphates and carbonates.	 Modern Inorganic Chemistry - R.D.Madan Textbook of Inorganic Chemistry- P.L Soni
3	Unit II: Exceptional properties of Beryllium –Diagonal relationship between Be and Al, extraction of magnesium.	 Modern Inorganic Chemistry - R.D.Madan Textbook of Inorganic Chemistry- P.L Soni
4	Unit II: p block elements -Boron family-comparative study of elements and compounds- oxides, hydroxides, halides and hydrides.	 Modern Inorganic Chemistry - R.D.Madan Textbook of Inorganic Chemistry- P.L Soni
5	Unit II: Preparation, properties, uses and structures of LiAlH ₄ , NaBH ₄ and Borozole.	 Modern Inorganic Chemistry - R.D.Madan Textbook of Inorganic Chemistry- P.L Soni
6	Unit II: Preparation, properties, uses and structures of Diborane.	 Modern Inorganic Chemistry - R.D.Madan Textbook of Inorganic Chemistry- P.L Soni
7	Unit II: Carbon family - comparative study of elements and compounds- hydrides, oxides and halides.	 Modern Inorganic Chemistry - R.D.Madan Textbook of Inorganic Chemistry- P.L Soni
8	Unit II: Classification of silicates, chemistry of silicones and their applications.	 Modern Inorganic Chemistry - R.D.Madan Textbook of Inorganic Chemistry-

		P.L Soni
9		 Advanced Organic Chemistry- B.SBahl, and Arun Bahl Modern Organic Chemistry-M.K Jain and S.C Sharma
10	Unit IV: Mechanism of $S_{\rm N}$ i reactions. Effect of structure of substrate, solvent, nucleophile and the leaving group	 Advanced Organic Chemistry- B.SBahl, and Arun Bahl Modern Organic Chemistry-M.K Jain and S.C Sharma
11	Unit IV: Aromatic nucleophilic substitution - benzyneand intermediate complex mechanism	 Advanced Organic Chemistry- B.SBahl, and Arun Bahl Modern Organic Chemistry-M.K Jain and S.C Sharma
12	Unit IV: Effect of substituents on reactivity, Orientation and reactivity in substituted benzenes	 Advanced Organic Chemistry- B.SBahl, and Arun Bahl Modern Organic Chemistry-M.K Jain and S.C Sharma
13	Unit IV: Aromatic electrophilic substitution reaction in benzene and substituted benzenes-nitration and halogenation	 Advanced Organic Chemistry- B.SBahl, and Arun Bahl Modern Organic Chemistry-M.K Jain and S.C Sharma
14	Unit IV: Sulphonation, Friedel-Craft's acylation reaction mechanism	 Advanced Organic Chemistry- B.SBahl, and Arun Bahl Modern Organic Chemistry-M.K Jain and S.C Sharma
15	Unit IV: Friedel-Craft's alkylation reaction mechanism	 Advanced Organic Chemistry- B.SBahl, and Arun Bahl Modern Organic Chemistry-M.K Jain and S.C Sharma

Auxilium College (Autonomous), Gandhi Nagar, Vellore - 632 006.

Lesson Plan for the year 2018 - 2019

Week	Portions to be covered	Reference
1	Unit 1: Chirality and optical activity - symmetry elements, asymmetric and dissymmetric molecule. Projection formula - Sawhorse, Newmann and Fischer projections and its interconversions.	 Advanced Organic Stereochemistry by N.Tewari Stereochemistry – Conformation and Mechanism by P.S.Kalsi
2	Unit 1: Nomenclature - Absolute configuration - R/S and D/L, Relative configurations - threo/erythro and syn/anti. Dissymmetry of allenes, biphenyls - atropisomerism, spiro compounds, transcyclooctene, cyclononene and molecules with helical structures.	 Advanced Organic Stereochemistry byN.Tewari Stereochemistry – Conformation and Mechanism by P.S.Kalsi
3	Unit 1: Stereo specific and stereo selective reactions - definition and examples. Asymmetric synthesis - Cram's rule. Geometrical isomerism - E/Z nomenclature of olefins, Geometrical and optical isomerism of disubstituted cyclopropane, cyclobutane and cyclopentanes.	 Advanced Organic Stereochemistry byN.Tewari Stereochemistry – Conformation and Mechanism by P.S.Kalsi
4	Unit 2: Conformational analysis of di-substituted cyclohexanes and their stereo chemical features - Geometric and optical isomerism of these derivatives.	 Advanced Organic Stereochemistry by N.Tewari Stereochemistry – Conformation and Mechanism byP.S.Kalsi Stereochemistry of Organic CompoundsbyD. Nasipuri
5	Unit 2: Conformation and reactivity of cyclohexene - Allylic 1,2 and 1,3 strain and related compound alkyldiene cyclohexane.	 Stereochemistry – Conformation and Mechanism by P.S.Kalsi Stereochemistry of Organic Compoundsby D. Nasipuri Stereochemistry of Carbon Compoundsby Ernest L.

		Eliel
6	Unit 2: Conformation of cyclohexanone-2-alkyl and 3-alkyl ketone effect and reactivity of cyclohexanone in comparison with cyclopentanones. Conformations of six membered rings containing hetero atoms.	 Stereochemistry – Conformation and Mechanism byP.S.Kalsi Stereochemistry of Organic CompoundsbyD. Nasipuri Stereochemistry of Carbon Compounds by Ernest L. Eliel
7	Unit 2: Conformation and stereochemistry of cis and trans decalin and 9-methyl decalin.	 Stereochemistry – Conformation and Mechanism byP.S.Kalsi Stereochemistry of Organic CompoundsbyD. Nasipuri Stereochemistry of Carbon Compounds by Ernest L. Eliel
8	Unit 4: E ₁ , E ₂ , E ₁ CB reaction – kinetics, mechanism and evidences.E ₁ , E ₂ and E ₁ CB variables- mechanistic spectrum,	• Stereochemistry – Conformation and Mechanism
9	Unit 4: Competition between elimination and substitution. Stereochemistry of E ₂ - syn and anti elimination reaction, orientation of the double bond.	• Stereochemistry – Conformation and Mechanism
10	Unit 4: Regiochemistry of E ₁ , E ₂ and E ₁ CB reactions with examples. Pyrolytic eliminations - acyclic and alicyclic systems, Molecular rearrangements during elimination.	 Stereochemistry – Conformation and Mechanism byP.S.Kalsi Stereochemistry of Organic Compoundsby D. Nasipuri
11	Unit 5: Optical Rotatory Dispersion and Circular Dichroism-terminology- optical rotation, circular birefringence, circular dichroism and cotton effect.	 Stereochemistry – Conformation and Mechanism by P.S.Kalsi Stereochemistry of Organic CompoundsbyD. Nasipuri
12	Unit 5: Plain curves — Application of plain curves — determination of structure, configuration, conformation and optical activity.	 Stereochemistry – Conformation and Mechanism by P.S.Kalsi Stereochemistry of Organic CompoundsbyD. Nasipuri

13	Unit 5: Rotatory dispersion of ketones - structure, configuration, conformation of unsaturated ketones.	 Stereochemistry of Carbon Compounds by Ernest L. Eliel Stereochemistry of Organic CompoundsbyD. Nasipuri
14	Unit 5: Emperical and semiempirical rules- The Axial haloketone rule, the Octant rule (Configuration and Conformation)	 Stereochemistry of Carbon Compounds by Ernest L. Eliel Stereochemistry of Organic CompoundsbyD. Nasipuri
15	Unit 5: Absolute configuration and ketal formation.Stereochemical analysis – polarimetry, chiral GC & HPLC and NMR techniques.	 Stereochemistry of Carbon Compounds by Ernest L. Eliel Stereochemistry of Organic Compoundsby D. Nasipuri

AUXILIUM COLLEGE (AUTONOMOUS) VELLORE – 6.

LESSON PLAN 2018- 2019

Week / Date	Topics to be Covered	Resources
I	Unit 1: Thermodynamic and kinetic stability- stepwise and overall stability constant- Relationship between both the constants	 Concise Coordination Chemistry by R. Gopalan Coordination Chemistry by Ajay Kumar
II	Unit 1: Trend in K-value - Irving-Williams series - Factors affecting the stability of complexes	 Concise Coordination Chemistry by R. Gopalan Coordination Chemistry by Ajay Kumar
III	Unit 1: Determination of stability constants by spectrophotometric, polarographic and potentiometric methods	 Concise Coordination Chemistry by R. Gopalan Coordination Chemistry by Ajay Kumar
IV	Unit 1: Detection of complex formation, Optical rotatory dispersion and circular dichroismapplication to complexes	 Essentials of Coordination Chemistry by Vasishtabhatt Inorganic Chemistry by Purcell and Kotz
V	Unit 1: Macrocyclic Ligands: Thermodynamic and kinetic template effect- structure, stability and applications of porphyrins, corrins, Schiffbases, Crown ethers and crypts	 Coordination Chemistry of Macrocyclic Compoundsby Gordon A Melson The chemistry of macrocyclic ligandcomplexes by Leonard F. Lindoy
VI	Unit 3: Types of absorption spectra – ligand spectra, counter - ion spectra, CT spectra, ligand field spectra –R-S coupling-Microstates –Hund's rule	 Concise Coordination Chemistry by R. Gopalan Coordination Chemistry by Ajay Kumar

VII	Unit 3: Term states for 'd' – ions- Selection Rules–Laporte's and spin selection rule, Splitting of terms in oh and td complexes	 Concise Coordination Chemistry by R. Gopalan Coordination Chemistry by Ajay Kumar
VIII	Unit 3: Correlation diagrams –Orgel diagrams and Tanabe-Sugano diagrams- Spectra of different d systems – Racah parameters- nephelauxetic	 Concise Coordination Chemistry by R. Gopalan Coordination Chemistry by Ajay Kumar
IX	Unit 3: Charge Transfer spectra- Classification- Ligand to Metal, Metal to Ligand, Intervalence and Intra Ligand Charge transfer	 Concise Coordination Chemistry by R. Gopalan Coordination Chemistry by Ajay Kumar
X	Unit 3: Magnetic characteristics of transition metal complexes - types- determination of magnetic susceptibility - Guoy and Faraday's method - magnetic criterion of bond type in complex and orbital contribution to magnetic moment.	 Physical InorganicChemistry- A Coordination Chemistry Approach byS. F. A. Kettle Concise Coordination Chemistry by R. Gopalan
XI	Unit 5: Trans effect – Trans effect series – theories and applications, cis effect	 Concise Coordination Chemistry by R. Gopalan Coordination Chemistry by Ajay Kumar
XII	Unit 5: Mechanisms of substitutions in octahedral complexes- Dissociative, Associative and Interchange (I _a and I _d) mechanisms.	 Inorganic Chemistry by Purcell and Kotz Concise Coordination Chemistry by R. Gopalan
XIII	Unit 5: Hydrolysis reactions —acid and base hydrolysis reactions of six-coordinated Co(III) ammine complexes — mechanisms — evidences	 Inorganic Chemistry by Purcell and Kotz Advance Inorganic Chemistry by Gurdeep Raj

XIV	Unit 5: Replacement of coordinated water – mechanisms – evidences - rates of water replacement - orbital occupation effects.	 Advance Inorganic Chemistry by Gurdeep Raj Inorganic Chemistry by Purcell and Kotz
XV	Unit 5: Synthesis of Pt and Co compounds- Metal complexes in medicinal chemistry, industrial processes and agriculture.	 Inorganic Chemistry by Purcell and Kotz Descriptive inorganic, Coordination, and Solid-state chemistry by Glen E. Rodgers Concise Coordination Chemistry by R. Gopalan

AUXILIUM COLLEGE (AUTONOMOUS) VELLORE – 6.

LESSON PLAN 2018 - 2019

Week / Date	Topics	Resources
I	Unit 1: Structure of solids- Comparison of X-ray and Neutron diffraction- Structure of Cadmium iodide and Nickel arsenide	Structural Inorganic Chemistry by A. F. Wells
II	Unit 1: Structure of Perovskite and spinels and inverse spinels, Formation of spinels	 Structural Inorganic Chemistry by A. F. Wells Understanding Solids by Richard Tilley
III	Unit 1: Hall effect and its applications, Pyroelectricity, piezo electricity and ferro electricity	 Solid State Chemistry and its Applications by Anthony R. West Solid State Chemistry- An Introduction by Smart and Moore
IV	Unit 1: Magnetic properties of solids- Hysteresis loss and loops Types of magnetic behaviour- Dia, Para, Ferro, Anti Ferro, Ferri magnetism-Ferrites, Garnets.	 Solid State Chemistry and its Applications by Anthony R. West Understanding solid state physics by Sharon Ann Holgate
V	Unit 2: Solid state electrolyte-β-alumina- application of solid state electrolytes.	 Solid State Chemistry and its Applications by Anthony R. West Solid State Electrochemistry by Peter G Bruce
VI	Unit 2: Reactions in solid state and phase transition, Ferrites and its types.	 Solid State Chemistry and its Applications by Anthony R. West Solid State Chemistryby D K Chakrabarty

VII	Unit 2: Garnets, Diffusion, Diffusion co-efficient, Diffusion mechanisms- Vacancy and interstitial diffusion.	 Solid State Chemistry and its Applications by Anthony R. West Solid State Chemistry by D K Chakrabarty
VIII	Unit 4: Quark theory, The magnetic properties of the Nucleus-Bohr magneton, Nuclear magneton, the neutron magnetic moment and the structure of the nucleon.	Essentials of Nuclear Chemistry by H.J.Arnikar
IX	Unit 4: The net magnetic moments of the nuclei - the spin I, the magnetic moment μ_I and Nordheim rules, Salient feature of the Liquid drop model with derivations	Essentials of Nuclear Chemistry by H.J.Arnikar
X	Unit 4: Salient feature of the Fermi –Gas model and Collective model.	Essentials of Nuclear Chemistry by H.J.Arnikar
XI	Unit 4: Nuclear reaction cross-section, Q value, Threshold energy and compound nucleus theory	Essentials of Nuclear Chemistry by H.J.Arnikar
XII	Unit 4: Detection and determination of activity by Cloud chamber, Bubble chamber	Solid State PhysicsModern Physics
XIII	Unit 4: Construction and working of Geiger-Muller counter, Scintillation and Cherenkov counters	 Solid State Physics Nuclear Chemistry by Maheshwar Sharon and Madhuri Sharon
XIV	Unit 4: Particle accelerators, Linear accelerators types and application	Solid State PhysicsModern Physics by Murugesan

XV	Unit 4: Construction and working of Cyclotron and Synchrotron, Nuclear Reactor: Fast breeder reactors	 Solid State Physics Modern Physics by Murugesan
----	---	--

Auxilium College (Autonomous), Gandhi Nagar, Vellore – 632 006.

Lesson Plan for the year 2018 - 2019

Week	Portions to be covered	Reference
1	Nitrogen family - preparations, properties and uses of hydrazine. Structure of N ₂ O, NO and N ₂ O ₅	 Modern Inorganic Chemistry - R.D.Madan Textbook of Inorganic Chemistry-P.L Soni
2	Structure of H ₃ PO ₄ , H ₃ PO ₃ , PCl ₃ , PCl ₅	 Modern Inorganic Chemistry - R.D.Madan Textbook of Inorganic Chemistry-P.L Soni
3	Oxygen Family - comparative study of compounds- halides- Hexafluorides, Tetrahalides, Dihalides, Dimeric monohalides.	 Modern Inorganic Chemistry - R.D.Madan Textbook of Inorganic Chemistry-P.L Soni
4	Oxygen Family - comparative study of compounds- Oxides- Monooxides, Dioxides, Trioxides and Heptoxides,oxyacids.	 Modern Inorganic Chemistry - R.D.Madan Textbook of Inorganic Chemistry-P.L Soni
5	Halogens - Comparative study of elements and compounds of halogens- hydracids, oxyacids.	 Modern Inorganic Chemistry - R.D.Madan Textbook of Inorganic Chemistry-P.L Soni
6	Inter halogen compounds,Pseudohalogens- comparison of halogens and pseudo halogens	 Modern Inorganic Chemistry - R.D.Madan Textbook of Inorganic Chemistry-P.L Soni
7	Noble gases - Position in the periodic table, Clathrates and its applications, Hybridisation and geometry of XeF ₂ ,XeF ₄ , XeF ₆ and XeOF ₄	 Modern Inorganic Chemistry - R.D.Madan Textbook of Inorganic Chemistry-P.L Soni
8	Elimination reaction: Types, orientation of double bond- Hoffmann and Saytzeff's rules, Cis and trans eliminations-mechanisms.	 Advanced Organic Chemistry-B.SBahl, and Arun Bahl Modern Organic

		Chemistry-M.K Jain and S.C Sharma
9	Mechanisms of E1 and E2 reactions and evidences. Elimination vs Substitution. Reactivities of methyl, ethyl, propyl, isopropyl, n-butyl, vinyl and benzyl halides.	 Advanced Organic Chemistry-B.SBahl, and Arun Bahl Modern Organic Chemistry-M.K Jain and S.C Sharma
10	Cycloalkanes-preparation using Wurtz reaction, Dieckmann's ring closure and reduction of aromatic hydrocarbons.	 Advanced Organic Chemistry-B.SBahl, and Arun Bahl Modern Organic Chemistry-M.K Jain and S.C Sharma
11	Substitution and ring opening reactions - Baeyer strain theory and theory of strainless rings.	 Advanced Organic Chemistry-B.SBahl, and Arun Bahl Modern Organic Chemistry-M.K Jain and S.C Sharma
12	Aromaticity - Huckels rule and its applications. Furan, Thiophene, Pyrrole.	 Advanced Organic Chemistry-B.SBahl, and Arun Bahl Modern Organic Chemistry-M.K Jain and S.C Sharma
13	Heterocyclic compounds-preparation, properties and uses of Pyridine, Quinoline and Isoquinoline	 Advanced Organic Chemistry-B.SBahl, and Arun Bahl Modern Organic Chemistry-M.K Jain and S.C Sharma
14	Phenols-Preparation, properties and uses of dihydric and trihydric phenols - Acidic character of phenols	 Advanced Organic Chemistry-B.SBahl, and Arun Bahl Modern Organic Chemistry-M.K Jain and S.C Sharma
15	Mechanism of Kolbe's reaction, Riemer-Teimann reaction, Gattermann reaction,	Advanced Organic

Mannich and Houben –Hoesch reactions.	Chemistry-B.SBahl, and
	Arun Bahl
	Modern Organic
	Chemistry-M.K Jain and
	S.C Sharma

Auxilium College (Autonomous), Gandhi Nagar, Vellore - 632 006.

Lesson Plan for the year 2018 - 2019 (ODD SEMESTER)

UCCHD16-GENERAL CHEMISTRY-III

Week	Portions to be covered	Reference	Platform (LMS)
Week 1	UNIT – 1: Calculation of Formula weight or Molecular weight and Mole concept. Relationship between Molar Mass, Mole and Avagadro Number	Chemistry 2e by Paul Flowers, Klaus Theopold, Richard Langley & William Robinson	Chalk & Board
Week 2	UNIT – 1 : Solutions- definition and properties, concentration terms, Molarity, Formality and Normality – definition, mathematical expression and Comparison.	1. Chemistry 2e by Paul Flowers, Klaus Theopold, Richard Langley & William Robinson. Modern Analytical Chemistry by David Harvey	Chalk & Board
Week 3	UNIT - 1: Equivalent weight calculation – for an acid, base, oxidizing agent. Volumetric Analysis- principle. Definition of Titrant, Titrand and Indicator.	Chemistry 2e by Paul Flowers, Klaus Theopold, Richard Langley &William Robinson. Modern Analytical Chemistry by David Harvey	Chalk & Board
Week 4	UNIT – 1: Preparation of Solutions and Standardization of Commercial acids. Primary and Secondary standards – Characteristics with Examples.	Modern Analytical Chemistry by David Harvey	Chalk & Board
Week 5	UNIT – 1: Theory of Acid-base titrations. Theory of acid-base indicators.	Analytical Chemistry by Gary Christian	Chalk & Board
Week 6	UNIT – 1: Theory of Redox titrations. Theory of Redox indicators.	Analytical Chemistry by Gary Christian	Chalk & Board
Week 7	UNIT – 1: Theory of Complexometric titrations and	Analytical Chemistry by Gary Christian	Chalk & Board

	their indicators.		
Week 8	UNIT – 1: Theory of Iodometry and Iodimetry titrations and their indicators.	Analytical Chemistry by Gary Christian	Chalk & Board
Week 9	UNIT – 1:Theory of Precipitation titrations and adsorption indicators.	Analytical Chemistry by Gary Christian	Chalk & Board
Week 10	UNIT – 1: Types of errors, minimizing the errors, accuracy and precision, significant figures.	Modern Analytical Chemistry by David Harvey	Chalk & Board
Week 11	UNIT - III: Acidity of Alkynes	Textbook of Organic Chemistry by Bahl & Arun Bahl	Chalk & Board
Week 12	UNIT - III: Formation of Acetylides. Addition Reactions with water, hydrogen halides, halogens	Textbook of Organic Chemistry by Bahl & Arun Bahl	Chalk & Board
Week 13	UNIT – III: , oxidation, ozonolysis and Hydroxylation with KMnO ₄	Textbook of Organic Chemistry by Bahl & Arun Bahl	Chalk & Board
Week 14	UNIT – III: Carboxylic acids - Ionisation of carboxylic acids-acidity constants-comparison of acid strengths of substituted haloacids.	Textbook of Organic Chemistry by Bahl & Arun Bahl	Chalk & Board
Week 15	UNIT – III: acid strengths of substituted benzoic acids-Conversion of acids to their derivatives.	Textbook of Organic Chemistry by Bahl & Arun Bahl	Chalk & Board

UGCHB516: NON MAJOR ELECTIVE: CHEMISTRY IN DAILY LIFE

Week	Portions to be covered	Reference	Platform (LMS)
Week 1	UNIT – 1 : Cosmetics Definition and Classification.	Chemistry in Daily life by Kirpal Singh	Chalk & Board
Week 2	UNIT – 1 : Components of Cosmetics. Deodrants and Antiperspirants – definition and differences.	Chemistry in Daily life by Kirpal Singh	Chalk & Board
Week 3	UNIT - 1 : Aerosols, Perfumes	Chemistry in Daily	Chalk & Board

	and Fragrances with examples. Pros and Cons of synthetic	life by Kirpal Singh	
	cosmetics.		
Week 4	UNIT – 2: Chemistry in Housing and Household materials - Introduction	Chemistry in Daily life by Kirpal Singh	Chalk & Board
Week 5	UNIT – 2: Chemistry in Household products: Cleaners, Pesticides, stain removers, fire extinguishers.	Chemistry in Daily life by Kirpal Singh	Chalk & Board
Week 6	UNIT – 2: Chemistry of Paint, Coatings, Varnishes and Polishes.	Chemistry in Daily life by Kirpal Singh	Chalk & Board
Week 7	UNIT – 3: Indian Medicinal Plants – Constituents and Medicinal Properties – Introduction.	Chemistry in Daily life by Kirpal Singh	Chalk & Board
Week 8	UNIT – 3: Constituents and medicinal properties of <i>Hibiscus</i> rosasinesis, <i>Adathoda vasica</i> , <i>Ocimum sanctum</i> , <i>Phyllanthus niruri</i> .	Chemistry in Daily life by Kirpal Singh	Chalk & Board
Week 9	UNIT – 3: Constituents and medicinal properties of <i>Solanum trilobatum</i> , <i>Acorus calamus</i> , <i>Centella asiatica and Piper longum</i>	Chemistry in Daily life by Kirpal Singh	Chalk & Board
Week 10	UNIT – 4: Dairy Chemistry: Milk and milk products, major and minor composition of milk.	Chemistry in Daily life by Kirpal Singh	Chalk & Board
Week 11	UNIT - 4: physical properties of milk, effect of milk on heating	Chemistry in Daily life by Kirpal Singh	Chalk & Board
Week 12	UNIT - 4: pasteurization, homogenization, cream, butter, milk powder and ice cream	Chemistry in Daily life by Kirpal Singh	Chalk & Board
Week 13	UNIT - 5: Food adulteration – adulterant in food materials	Chemistry in Daily life by Kirpal Singh	Chalk & Board
Week 14	UNIT – 5: Organic Farming – Definition and Advantages	Chemistry in Daily life by Kirpal Singh	Chalk & Board
Week 15	UNIT – 5: limitations of organic farming, research findings on organic food	Chemistry in Daily life by Kirpal Singh	Chalk & Board

PECHE15: ELECTIVE IIIA: ANALYTICAL CHEMISTRY

Week	Portions to be covered	Reference	Platform (LMS)
Week 1	UNIT – 1: Thermal Analysis – Introduction and types. Thermo Gravimetric Analysis (TGA)- principle, instrumentation.	Analytical Chemistry by Usha Rani.	Chalk & Board
Week 2	UNIT – 1: Thermogravimetric curves of CaC ₂ O ₄ H ₂ O, MgCr ₂ O ₄ , Hg ₂ CrO ₄ , Ag ₂ CrO ₄ , AgNO ₃ and Cu(NO ₃) ₂ .	Analytical Chemistry by Usha Rani.	Chalk & Board
Week 3	UNIT – 1: Factors affecting TGA, Applications of TGA. DTG – Principles, Comparison of DTG&TGA	Instrumental Methods of Chemical Analysis by A K Srivatasava	Chalk & Board
Week 4	UNIT – 1: Differential Thermal Analysis (DTA) - principle, instrumentation, simultaneous TGA and DTA curves and applications.	Instrumental Methods of Chemical Analysis by A K Srivatasava. Analytical Chemistry by Usha Rani.	Chalk & Board
Week 5	UNIT – 1: Differential Scanning Calorimetry (DSC) principle, instrumentation and applications.	Instrumental Methods of Chemical Analysis by A K Srivatasava. Analytical Chemistry by Usha Rani.	Chalk & Board
Week 6	UNIT – 1: Thermometric titrations - principle, instrumentation and applications.	Instrumental Methods of Chemical Analysis by A K Srivatasava. Analytical Chemistry by Usha Rani.	Chalk & Board
Week 7	UNIT – 2:Chromatographic Techniques - Gas Chromatography (GC) - definition, principle, types, instrumentation - carrier gas, sample injection system, column, thermal compartment	Analytical Chemistry by Gary Christian	Chalk & Board

Week 8	UNIT - 2: detectors - Thermal Conductivity Detector (TCD), Ionization Detector (ID), Recorder and applications. UNIT - 2: HPLC	Analytical Chemistry by Gary Christian	Challe & Board
Week 9	instrumentation - solvent delivery system, sample injection system, column, solvent.	Analytical Chemistry by Gary Christian	Chalk & Board
Week 10	UNIT - 2: detectors – UV detector, bulk property and solute property detectors, recorder and applications	Analytical Chemistry by Gary Christian	Chalk & Board
Week 11	UNIT – 2: Super Critical Fluid Chromatography (SCFC) - properties, instrumentation, comparison with other types of chromatography	Analytical Chemistry by Gary Christian	Chalk & Board
Week 12	UNIT - 2: super critical fluid extraction and applications	Analytical Chemistry by Gary Christian	Chalk & Board
Week 13	UNIT-5: Environmental Chemistry - Water quality standards - BOD, COD - Analysis of Waste Water and its treatment - salinity of water and its treatment - Reverse Osmosis	Instrumental Methods of Chemical Analysis by Kaur	Chalk & Board
Week 14	UNIT – 5: Ambient air quality standards - Photochemical smog and oxides of nitrogen. Toxic Chemicals in environment - Toxicity of Mercury, Lead, Chromium	Instrumental Methods of Chemical Analysis by Kaur	Chalk & Board
Week 15	UNIT – 5: Analytical methods in Environmental Toxins	Instrumental Methods of Chemical Analysis by Kaur	Chalk & Board

Lesson Plan for the year 2019 - 2020 (EVEN SEMESTER)

ENVIRONMENTAL STUDIES

Week	Portions to be covered	Reference	Platform (LMS)
Week 1	UNIT – 1: Multidisciplinary nature of Environmental Studies, Scope and Importance	UGC Syllabus book	Chalk and Board
Week 2	UNIT – 1: Natural resources: Overexploitation of Water, Land and Energy.	UGC Syllabus book	Chalk and Board
Week 3	UNIT - 1 : Natural Resources: Forest and Mineral	UGC Syllabus book	Chalk and Board
Week 4	UNIT – 2: Ecosystem: Types, Structure & Function.	UGC Syllabus book	Chalk and Board
Week 5	UNIT – 2: Ecosystem- Forest & Grassland.	UGC Syllabus book	Chalk and Board
Week 6	UNIT – 2: Desert & acquatic Ecosystem.	UGC Syllabus book	Chalk and Board
Week 7	UNIT – 3: Biodiversity & its values.	UGC Syllabus book	Chalk and Board
Week 8	UNIT – 3: India as a nation of MEGA biodiversity.	UGC Syllabus book	Chalk and Board
Week 9	UNIT – 3:Threats to Biodiversity & its conservation.	UGC Syllabus book	Chalk and Board
Week 10	UNIT – 4: Types of Environmental Pollution.	UGC Syllabus book	Chalk and Board
Week 11	UNIT - 4: Water, Air, Noise & Soil pollution – Causes, Effects.	UGC Syllabus book	Chalk and Board
Week 12	UNIT – 4: Rain water Harvesting and Solid Waste Management.	UGC Syllabus book	Chalk and Board
Week 13	UNIT – 5: Human Population & Environmental Pollution act.	UGC Syllabus book	Chalk and Board
Week 14	UNIT – 5: Climate Change, Afforestation and Sustainable Development.	UGC Syllabus book	Chalk and Board
Week 15	UNIT – 5: Environmental Protection Act.	UGC Syllabus book	Chalk and Board

UGCHB616: NON MAJOR ELECTIVE: CHEMISTRY IN DAILY LIFE

Week	Portions to be covered	Reference	Platform (LMS)
Week 1	UNIT - 1 : Cosmetics Definition and Classification.	Chemistry in Daily life by Kirpal Singh	Chalk & Board
Week 2	UNIT – 1 : Components of Cosmetics. Deodrants and Antiperspirants – definition and differences.	Chemistry in Daily life by Kirpal Singh	Chalk & Board
Week 3	UNIT – 1 : Aerosols, Perfumes and Fragrances with examples. Pros and Cons of synthetic cosmetics.	Chemistry in Daily life by Kirpal Singh	Chalk & Board
Week 4	UNIT – 2: Chemistry in Housing and Household materials - Introduction	Chemistry in Daily life by Kirpal Singh	Chalk & Board
Week 5	UNIT – 2: Chemistry in Household products: Cleaners, Pesticides, stain removers, fire extinguishers.	Chemistry in Daily life by Kirpal Singh	Chalk & Board
Week 6	UNIT – 2: Chemistry of Paint, Coatings, Varnishes and Polishes.	Chemistry in Daily life by Kirpal Singh	Chalk & Board
Week 7	UNIT – 3: Indian Medicinal Plants – Constituents and Medicinal Properties – Introduction.	Chemistry in Daily life by Kirpal Singh	Chalk & Board
Week 8	UNIT – 3: Constituents and medicinal properties of <i>Hibiscus</i> rosasinesis, Adathoda vasica, Ocimum sanctum, Phyllanthus niruri.	Chemistry in Daily life by Kirpal Singh	Chalk & Board
Week 9	UNIT – 3: Constituents and medicinal properties of <i>Solanum trilobatum</i> , <i>Acorus calamus</i> , <i>Centella asiatica and Piper longum</i>	Chemistry in Daily life by Kirpal Singh	Chalk & Board
Week 10	UNIT – 4: Dairy Chemistry: Milk and milk products, major and minor composition of milk.	Chemistry in Daily life by Kirpal Singh	Chalk & Board
Week 11	UNIT - 4: physical properties of milk, effect of milk on heating	Chemistry in Daily life by Kirpal Singh	Chalk & Board
Week 12	UNIT - 4: pasteurization,	Chemistry in Daily	Chalk & Board

	homogenization, cream, butter, milk powder and ice cream	life by Kirpal Singh	
Week 13	UNIT - 5: Food adulteration – adulterant in food materials	Chemistry in Daily life by Kirpal Singh	Chalk & Board
Week 14	UNIT – 5: Organic Farming – Definition and Advantages	Chemistry in Daily life by Kirpal Singh	Chalk & Board
Week 15	UNIT – 5: limitations of organic farming, research findings on organic food	Chemistry in Daily life by Kirpal Singh	Chalk & Board

PECHC19: ELECTIVE IIA: PHARMACEUTICAL CHEMISTRY

Week	Portions to be covered	Reference	Platform (LMS)
Week 1	UNIT – 1: Mechanism of drug action and metabolism of Drugs - Introduction, classification of drugs,	Pharmaceutical Chemistry by Jayashree Ghosh	Chalk & Board
Week 2	UNIT – 1: Mechanism of action, drug receptors, biological responses	Pharmaceutical Chemistry by Jayashree Ghosh	Chalk & Board
Week 3	UNIT – 1: The chemistry of drug receptor binding - covalent bond, hydrogen bond, Vanderwaals forces	Pharmaceutical Chemistry by Jayashree Ghosh	Chalk & Board
Week 4	UNIT – 1: Mechanism of Drug action	Pharmaceutical Chemistry by Jayashree Ghosh	Chalk & Board
Week 5	UNIT – 1: Metabolism of Drugs – Chemical Pathways	Pharmaceutical Chemistry by Jayashree Ghosh	Chalk & Board
Week 6	UNIT – 1: phase I and phase II reactions, Biotransformation	Pharmaceutical Chemistry by Jayashree Ghosh	Chalk & Board
Week 7	UNIT – 2: Absorption of drugs - Routs of administration, factors affecting absorption	Pharmaceutical Chemistry by Jayashree Ghosh	Chalk & Board
Week 8	UNIT – 2: Digestion and absorption of proteins and fats	Pharmaceutical Chemistry by Jayashree Ghosh	Chalk & Board
Week 9	UNIT – 2: Assay of drugs - Chemical, biological, immunological assay	Pharmaceutical Chemistry by Jayashree Ghosh	Chalk & Board
Week 10	UNIT – 2: Biological role of	Pharmaceutical	Chalk & Board

Week 11	some inorganic compounds - Sodium and their compounds, potassium and their compounds UNIT - 2: Biological role of some inorganic compounds - Calcium and their compounds,	Chemistry by Jayashree Ghosh Pharmaceutical Chemistry by Jayashree Ghosh	Chalk & Board
Week 12	Iodine and their compounds UNIT – 2: Biological role of some inorganic compounds - Copper and their compounds, zinc and their compounds	Pharmaceutical Chemistry by Jayashree Ghosh	Chalk & Board
Week 13	UNIT - 4: Podophyllotoxins, mechanism of action, endochrine agents, taxol.	Pharmaceutical, applied and Natural products Chemistry by P S Kalsi & Sangeeta Jagtap	Chalk & Board
Week 14	UNIT - 5: Toxins and their medicinal value – Introduction and classification. Toxins from microbes to reptiles	Pharmaceutical, applied and Natural products Chemistry by P S Kalsi & Sangeeta Jagtap	Chalk & Board
Week 15	UNIT – 5: Blood clotting, anticoagulants	Pharmaceutical, applied and Natural products Chemistry by P S Kalsi & Sangeeta Jagtap	Chalk & Board

PCCHN15: SOLID STATE CHEMISTRY AND NUCLEAR CHEMISTRY

Week	Portions to be covered	Reference	Platform (LMS)
Week 1	UNIT - 2: Optical Properties	Essentials of	Chalk & Board
	of Solids – Luminescence &	Nuclear Chemistry	
	Phosphors.	by H J Arnikar.	
Week 2	UNIT - 2 : Lasers – Ruby	Essentials of	Chalk & Board
	Laser & Neodynium Laser	Nuclear Chemistry	
		by H J Arnikar.	
Week 3	UNIT - 4: Bethe Notations	Essentials of	Chalk & Board
	and Introduction to Nuclear	Nuclear Chemistry	
	Reactions & Types	by H J Arnikar.	
Week 4	UNIT - 4: Direct,	Essentials of	Chalk & Board
	Photonuclear &	Nuclear Chemistry	
	Thermonuclear reactions.	by H J Arnikar.	
Week 5	UNIT - 4: Modes of	Essentials of	Chalk & Board
	radioactive decay, Nuclear	Nuclear Chemistry	

	isomerism	by H J Arnikar.	
Week 6	UNIT - 4: Isomeric Transition,	Essentials of	Chalk & Board
	Internal conversion.	Nuclear Chemistry	
		by H J Arnikar.	
Week 7	UNIT - 4:Stellar Energy,	Essentials of	Chalk & Board
	Nucleosynthesis of light and	Nuclear Chemistry	
	heavy elements.	by H J Arnikar.	
Week 8	UNIT - 4: Hydrogen burning,	Essentials of	Chalk & Board
	Carbon burning, e, x, r, p & x	Nuclear Chemistry	
	processes.	by H J Arnikar.	
Week 9	UNIT - 4: Separation of	Essentials of	Chalk & Board
	Isotopes, Boron Isotope	Nuclear Chemistry	
		by H J Arnikar.	
Week 10	UNIT - 4: Isotope exchange and	Essentials of	Chalk & Board
	Laser irradiation.	Nuclear Chemistry	
		by H J Arnikar.	
Week 11	UNIT - 4: Separation of	Essentials of	Chalk & Board
	Uranium isotopes	Nuclear Chemistry	
		by H J Arnikar.	
Week 12	UNIT - 4: Ultracentrifugation	Essentials of	Chalk & Board
	and Laser irradiation.	Nuclear Chemistry	
		by H J Arnikar.	
Week 13	UNIT-4: Analytical applications	Essentials of	Chalk & Board
	of radioisotopes as traces.	Nuclear Chemistry	
		by H J Arnikar.	
Week 14	UNIT - 4: Isotope dilution	Essentials of	Chalk & Board
	analysis, Neutron activation	Nuclear Chemistry	
	analysis.	by H J Arnikar.	
Week 15	UNIT - 4: Age determination	Essentials of	Chalk & Board
	by tritium and carbon-14	Nuclear Chemistry	
	content.	by H J Arnikar.	

Dr. Sr. Jayasanthi

Auxilium College (Autonomous), Gandhi Nagar, Vellore – 632 006. Lesson Plan for the year 2018 - 2019 Odd Semester UECHA 16 – Analytical Chemistry

Week	Portions to be covered	Reference
1	Unit 1: Principle of gravimetric analysis, characteristic of precipitating agents — choice of precipitants and condition for precipitation.	R. Gopalan, P.S. Subramanian, K. Rengarajan, Elements of Analytical Chemistry, Sultan Chand & Sand, Reprint 2017.
2	Unit 1: Specific and selective precipitants – DMG-cupferron, salicylaldehyde, ethylene diamine – use of sequestering agents.	R. Gopalan, P.S. Subramanian, K. Rengarajan, Elements of Analytical Chemistry, Sultan Chand & Sand, Reprint 2017.
3	Unit 1: Co-precipitation – post precipitation – differences – reduction of error precipitation from homogeneous solution – Calculation in gravimetric methods. Data analysis – Precision and accuracy, types of errors, standard deviation.	R. Gopalan, P.S. Subramanian, K. Rengarajan, Elements of Analytical Chemistry, Sultan Chand & Sand, Reprint 2017.
4	Unit 2: Paper and column chromatography: Principle, Experimental requirement and application	Skoog, Holler, Crouch, Instrumental analysis, Cengage Cleaning, Eleventh Reprint 2012
5	Unit 2: Thin Layer Chromatography: Principle, Experimental requirement and application	Skoog, Holler, Crouch, Instrumental analysis, Cengage Cleaning, Eleventh Reprint 2012
6	Unit 2: Ion Exchange Chromatography – Properties and types – Factors affecting ion exchange equilibria.	Skoog, Holler, Crouch, Instrumental analysis, Cengage Cleaning, Eleventh Reprint 2012
7	Unit 3: UV Visible Spectroscopy: Absorption laws – Calculations involving Beer-Lambert,s law.	Elementary Organic Spectroscopy, Y.R. Sharma, S. Chand and Company limited, Reprint 2012.
8	Unit 3: Instrumentation – Photocolorimeter and spectrophotometer – block diagram with description of components.	Elementary Organic Spectroscopy, Y.R. Sharma, S. Chand and Company limited, Reprint 2012.

9	Unit 3: Types of electronic transitions –	R. Gopalan, P.S. Subramanian, K.
	chromophore and auxochromes – factors	Rengarajan, Elements of Analytical
	affecting absorption maximum and intensity	Chemistry, Sultan Chand & Sand,
		Reprint 2017.
10	Unit 4: Infrared Spectroscopy – Principle –	Elementary Organic Spectroscopy,
	types of stretching and bending vibrations.	Y.R. Sharma, S. Chand and
		Company limited, Reprint 2012
11	Unit 4: Instrumentation – block diagram –	R. Gopalan, P.S. Subramanian, K.
	source-monochromator-sample cell- sampling	Rengarajan, Elements of Analytical
	techniques – detector and recorders	Chemistry, Sultan Chand & Sand,
		Reprint 2017.
12	Unit 4: Identification of simple organic	Elementary Organic Spectroscopy,
	molecules from characteristic absorption	Y.R. Sharma, S. Chand and
	bands.	Company limited, Reprint 2012
13	Unit 5: Nuclear Magnetic Resonance	Gurdeep R. Charwal, Sham K.
	Spectroscopy – Principle – Instrumentation	Anand, Spectroscopy, Himalaya
	with its different components Chemical shift,	Publishing House, Fifth Revised and
	factors affecting chemical shift - shielding	Enlarged Edition – 2001
	mechanism.	
14		Elementary Organic Spectroscopy,
	Unit 5: NMR spectrum of simple organic	Y.R. Sharma, S. Chand and
	compounds – alcohols, aldehydes and ketones.	Company limited, Reprint 2012.
15	Unit 5: Mass Spectrometry – Principle –	Elementary Organic Spectroscopy,
	Instrumentation - Mass spectrum of simple	Y.R. Sharma, S. Chand and
	organic compounds – alcohols, aldehydes and	Company limited, Reprint 2012.
	ketones.	

Auxilium College (Autonomous), Gandhi Nagar, Vellore – 632 006. Lesson Plan for the year 2018- 2019 Odd Semester PECHE 15 – Analytical Chemistry

Week	Portions to be covered	Reference
2	Unit 3: Atomic absorption spectrometry – principle - instrumentation with block diagram –Interferences in AAS -Difference between atomic absorption and emission method, advantages and disadvantages of AES, Unit 3: Difference between atomic absorption and emission method, advantages and	P.S. Subramanian, K. Rengarajan, Elements of Analytical Chemistry, R. Gopalan, Sultan chand & Sons, Reprint 2017. P.S. Subramanian, K. Rengarajan,
	disadvantages of AES	Elements of Analytical Chemistry, R. Gopalan, Sultan chand & Sons, Reprint 2017.
3	Unit 3: Advantages of AAS over flame emission spectroscopy, disadvantage of AAS.	P.S. Subramanian, K. Rengarajan, Elements of Analytical Chemistry, R. Gopalan, Sultan chand & Sons, Reprint 2017.
4	Unit 3: Applications of AAS: Some typical analysis like determination of metal in biological system, lead in petrol.	Willard Merritt, Dean and Settle, Instrumental Methods of Analysis, CBS Publishers and Distributors Pvt. Ltd, Seventh Edition.
5	Unit 3: Photo acoustic spectroscopy – instrumentation with block diagram and applications	Willard Merritt, Dean and Settle, Instrumental Methods of Analysis, CBS Publishers and Distributors Pvt. Ltd, Seventh Edition.
6	Unit 4: Computers in Chemistry - introduction to computers - hardware, software and programming languages.	C Programming – The ultimate way to learn the fundamentals of C-Language by Harry H. Chaudary
7	Unit 4: C – Programming: variables, constant, operators, input and output functions. Go To statement – functions, arrays.	C Programming – The ultimate way to learn the fundamentals of C-Language by Harry H. Chaudary

8	Unit 4: Pointers. Calculation of pH & Solubility Product	C Programming – The ultimate way to learn the fundamentals of C-Language by Harry H. Chaudary
9	Unit 4: Calculation of bond energy using Born-Lande equation. Introduction to internet service provided in India.	C Programming – The ultimate way to learn the fundamentals of C-Language by Harry H. Chaudary
10	Unit 4: Terms used in internet, www, http, html, TCP/IP band width, dialup service. ISDN and Search Engines.	C Programming – The ultimate way to learn the fundamentals of C-Language by Harry H. Chaudary
11	Unit 5: Toxic Chemicals in environment – Toxicity of Mercury.	Natural products chemistry – Sources, separations and Structure by Raymond cropper George Nicola.
12	Unit 5: Toxic Chemicals in environment – Toxicity of Lead.	Natural products chemistry – Sources, separations and Structure by Raymond cropper George Nicola.
13	Unit 5: Toxic Chemicals in environment – Toxicity of Chromium.	Natural products chemistry – Sources, separations and Structure by Raymond cropper George Nicola.
14	Unit 5: Analytical methods in environmental toxins.	Natural products chemistry – Sources, separations and Structure by Raymond cropper George Nicola.
15	Unit 5: Analytical methods in environmental toxins.	Natural products chemistry – Sources, separations and Structure by Raymond cropper George Nicola.

Auxilium College (Autonomous), Gandhi Nagar, Vellore – 632 006. Lesson Plan for the year 2018 - 2019 Even Semester

UECHF 16 – Pharmaceutical Chemistry

Week	Portions to be covered	Reference
1	Unit 1: Definition of the following terms - drug, nature and sources of drugs, pharmacy, pharmacodynamics, pharmacokinetics, pharmacology, molecular pharmacology, pharmacophore, toxicology. Bacteria, virus, difference between bacteria and virus, fungi, vaccine.	Pharmacetical Chemistry Jaya shree Ghoush
2	Unit 1: Causes, symptoms and drugs for anaemia, jaundice, cholera, malaria and filarial. Causes, symptoms and drugs for dengue fever, chikungunya, tyhoid. Diagnostic test for sugar, salt and cholesterol in blood and urine.	Applied Chemistry Jaya shree Ghoush
3	Unit 1: Indian medicinal plants - medicinal uses and chemical present in neem, keezhanelli, mango, adathoda, thoothuvalai, hibiscus, rose, tulsi, turmeric, curry leaves, ficus.	Pharmacetical Chemistry Jaya shree Ghoush
4	Unit 2: Sulphonamides – definition, synthesis and therapeutic uses of prontosil, sulphathiozole. Definition, synthesis and therapeutic uses of sulphafurazole and sulphapyridine.	Pharmacetical Chemistry Jaya shree Ghoush
5	Unit 2: SAR of prontosil. Antibiotics – definition, conditions, classifications. Properties, therapeutic uses and structure activity relationship.	Pharmacetical Chemistry Jaya shree Ghoush
6	Unit 2: Properties, therapeutic uses and structural activity relationship of chloramphenicol, tetracyclines. Antiseptics and disinfectants-definition and distinction, phenolic and chloro compounds.	Pharmacetical Chemistry Jaya shree Ghoush
7	Unit 3: Analgesics – definition, narcotic: natural, morphine and its derivatives, uses, SAR of morphine. Synthetic - pethidine, methodone, morphinan, benzomorphan – disadvantages and uses.	Pharmacetical Chemistry Lakshmi

	T	
8	Unit 3: Non-narcotic analgesics - salicylic acid and its derivatives, para-aminophenol derivatives, pyrazole derivative, indolyl and aryl acetic acid derivatives, ibuprofen, ketoprofen -therapeutic uses and adverse effects. Anaesthetics — definition, characteristics, classifications.	Pharmacetical Chemistry Lakshmi
9	Unit 3: Volatile general anaesthetics - ether, vinyl ether, chloroform, halothane, trichloroethylene, ethylchloride, nitrous oxide, cyclopropane – uses and disadvantages. Non-volatile general anesthetics - thiopental sodium, methohexitone, propanidid.	Pharmacetical Chemistry Jaya shree Ghoush
10	Unit 4: Cancer: definition, causes, treatment, drugs used (antineoplastics). AIDS - causes, symptoms, prevention, AZT, DDC.	Pharmacetical Chemistry Jaya shree Ghoush
11	Unit 4: Hypoglycemic drugs, diabetes - types - causes, control, insulin- preparation, uses. Oral hypoglycemic agents. Anticonvulsant agents - definition, types. Barbiturates, hydantoins, oxazolidenediones, succinimides.	Pharmacetical Chemistry Jaya shree Ghoush
12	Unit 4: Blood - grouping, composition, R _h factor. Blood pressure - hypertension and hypotension, treatment.	Pharmacetical Chemistry Jaya shree Ghoush
13	Unit 5: Cardiovascular drugs – definition, action, cardiac glycosides, anti-arrhythmic drugs-characteristics, classification, example - quinidine, propanol hydrochloride and uses.	Pharmacetical Chemistry Jaya shree Ghoush
14	Unit 5: Anti-hypertensive agents – aldomet, pentolinium tartrate, reserpine. Anti anginal agents – nitrites, dipyridamole.	Pharmacetical Chemistry Jaya shree Ghoush
15	Unit 5: Vasodilator, tolazoline hydrochloride, isoxsuprine hydrochloride, sodium nitroprusside, hydrallazine hydrochloride and papaverine. Organic Pharmaceutical aids: Preservatives, Colouring agent, Sweetening agent and flavouring agent.	Applied Chemistry Jaya shree Ghoush

Auxilium College (Autonomous), Gandhi Nagar, Vellore – 632 006. Lesson Plan for the year 2018 - 2019 Even Semester PECHC15 – Pharmaceutical Chemistry

Week	Portions to be covered	Reference
1	Unit 3: Drug discovery-introduction. Discovery of Penicillin	Medicinal Chemistry by V K Ahuwalia & Madhu Chopra
2	Unit 3: Discovery of Lead compounds	Medicinal Chemistry by V K Ahuwalia & Madhu Chopra
3	Unit 3 : Lead modification – Modification of functional group. SAR	Medicinal Chemistry by V K Ahuwalia & Madhu Chopra
4	Unit 3:QSAR – Hammett Equation, Taft equation, Hansch Analysis	Medicinal Chemistry by V K Ahuwalia & Madhu Chopra
5	Unit 3: Craig Plot, Drug Design using QSAR	Medicinal Chemistry by V K Ahuwalia & Madhu Chopra
6	Unit 3: Computer Aided Drug Design (CADD).	Medicinal Chemistry by V K Ahuwalia & Madhu Chopra
7	Unit 4: Cancer Chemotherapy – Types of Neoplasm	Medicinal Chemistry by V K Ahuwalia & Madhu Chopra
8	Unit 4: Causes of Cancer, Tumor Formation, Mechanism and metastasis.	Medicinal Chemistry by V K Ahuwalia & Madhu Chopra
9	Unit 4 : Determination of drug response; Cytotoxic anticancer drugs – Alkylating agents and its mode of action.	Medicinal Chemistry by V K Ahuwalia & Madhu Chopra
10	Unit 4: Antimetabolites, antitumor antibiotics, pyrimidine antagonist.	Medicinal Chemistry by V K Ahuwalia & Madhu Chopra
11	Unit 4: Treatment of Cancer – Radiation, Surgery and Chemotherapy.	Medicinal Chemistry by V K Ahuwalia & Madhu Chopra

12	Unit 5: Introduction of Nutraceutical	Medicinal Chemistry by
	chemistry	V K Ahuwalia & Madhu
		Chopra
13	Unit 5: Nutraceuticals: Plant Sources.	Medicinal Chemistry by
		V K Ahuwalia & Madhu
		Chopra
14	Unit 5: Nutraceuticals: Animal Sources	Medicinal Chemistry by
		V K Ahuwalia & Madhu
		Chopra
15	Unit 5: Nutraceuticals: Microbial Sources.	Medicinal Chemistry by
		V K Ahuwalia & Madhu
		Chopra

Lesson plan for the year 2018 - 2019

Odd Semester

PECHA15- POLYMER CHEMISTRY

Week	Unit	Portions to be covered	Reference
1	II	Characterization methods, crystalline nature, X-ray diffraction, degree of crystallinity	Polymer Science By V.R. Gowariker, Textbook of Polymer Science By Fred W. Billmeyer
2	II	Differential Scanning Calorimetric (DSC) and Thermo Gravimetric Analysis of polymers (TGA)	Polymer Science By V.R. Gowariker, Textbook of Polymer Science By Fred W. Billmeyer
3	II	00 1 1 11	Polymer Science By V.R. Gowariker, Textbook of Polymer Science By Fred W. Billmeyer
4	III	Hydrolysis, acidolysis and hydrogenation	Polymer Science By V.R. Gowariker, Textbook of Polymer Science By Fred W. Billmeyer
5	III	Cyclisation, cross-linking and vulcanization	Polymer Science By V.R. Gowariker, Textbook of Polymer Science By Fred W. Billmeyer
6	III	Graft and block copolymers, Thermal oxidation and mechanical degradation	Polymer Science By V.R. Gowariker, Textbook of Polymer Science By Fred W. Billmeyer
7	III	Oxidative and photodegradation	Polymer Science By V.R. Gowariker, Textbook of Polymer Science By Fred W. Billmeyer

157

8	III	Mechanical properties of polymers, stress versus strain measurements	Polymer Science By V.R. Gowariker, Textbook of Polymer Science By Fred W. Billmeyer
9	IV	Polymer technology- moulding, extrusion casting of films and calendaring	Polymer Science By V.R. Gowariker, Textbook of Polymer Science By Fred W. Billmeyer
10	IV	Molecular weights of polymers - viscometry, osmometry, light scattering	Polymer Science By V.R. Gowariker, Textbook of Polymer Science By Fred W. Billmeyer
11	IV	Gel Permeation Chromatography (GPC), ultracentrifugation, biodegradation	Polymer Science By V.R. Gowariker, Textbook of Polymer Science By Fred W. Billmeyer
12	V	Applications of polymers - industrially important polymers - natural and synthetic rubber,	Polymer Science By V.R. Gowariker, Textbook of Polymer Science By Fred W. Billmeyer
13	V	polyester, polytetrafluoroethylene (Teflon) polystyrene, ion exchange resin	Polymer Science By V.R. Gowariker, Textbook of Polymer Science By Fred W. Billmeyer
14	V	polyacrylonitrile, carbon fibres, polyacrylates, polyvinyl chloride (PVC)	Polymer Science By V.R. Gowariker, Textbook of Polymer Science By Fred W. Billmeyer
15	V	Electrically conducting polymers - poly acetylene - poly aniline	Polymer Science By V.R. Gowariker, Textbook of Polymer Science By Fred W. Billmeyer

Lesson plan for the year 2018 - 2019

PCCHJ15 – SYNTHETIC ORGANIC CHEMISTRY

Week	Unit	Portions to be covered	Reference
1	III	Polymer supported reagents (synthesis of oligosaccharide)	Organic Reaction Mechanism By V. K. Ahluwalia
2	III	Micro oven synthesis (esterification, deesterification, hydrolysis)	Organic Reaction Mechanism By V. K. Ahluwalia, Organic Organic Chemistry By Jagadamba, Singh
3	III	Alkylation of enamines, active methylene compounds	Reactions, Rearrangements and Reagents By S. N. Sanyal, Organic Reactions and their Mechanisms By P. S. Kalsi
4	III	Phosphorous, nitrogen and sulphur ylides	Organic Reactions and their Mechanisms By P. S. Kalsi, Advanced Organic Chemistry, Part B By Francis A. Carey and Richard J. Sundberg
5	III	Robinson annulations, DCC, trimethyl silyl iodide, 1,3-dithiane (Umpolung),	Organic Reactions and their Mechanisms By P. S. Kalsi, Advanced Organic Chemistry, Part B By Francis A. Carey and Richard J. Sundberg
6	III	Diisobutylaluminium hydride (DIBAL), BBN, trimethyl silyl chloride	Organic Reactions and their Mechanisms By P. S. Kalsi, Advanced Organic Chemistry, Part B By Francis A. Carey and Richard J. Sundberg
7	IV	Principles and synthetic process involving phase transfer catalysis - nitriles from alkyl halides, benzoyl cyanides from benzoyl chlorides	Organic Synthesis: Special Techniques By V. K. Ahluwalia

159

8	IV	Preparation of alkyl fluorides from alkyl halides, alcohols from alkyl halides using PTC	Organic Synthesis: Special Techniques By V. K. Ahluwalia
9	IV	Preparation of azides from alkyl halides, sodium alkyl sulphonates from alkyl halides using PTC	
10	IV	Preparation of alkyl nitrates, thiocyanates, cyanates and p-toluenesulphonates from alkyl halides using PTC	
11	IV	Preparation of aryl ethers and thioethers, esterification using PTC	Organic Synthesis: Special Techniques By V. K. Ahluwalia
12	IV	Diazotransfer by phase transfer catalyst, dihalocarbenes	Organic Synthesis: Special Techniques By V. K. Ahluwalia
13	V	Transition metal catalyzed reactions - reaction and mechanism of Heck reaction and Suzuki cross coupling reaction	
14	V	Reaction and mechanism of carboxymethylation, hydro formylation	Organic Reactions and their Mechanisms By P. S. Kalsi, Advanced Organic Chemistry, Part B By Francis A. Carey and Richard J. Sundberg
15	V	Epoxide-allylic alcohol rearrangement	Comprehensive Organic Synthesis By D.Gelman, Comprehensive Heterocyclic Chemistry III By Katritzky

Lesson plan for the year 2018 - 2019

USCHC516 - SMALL SCALE CHEMISTRY

Week	Unit	Portions to be covered	Reference
1	I	Objectives and characteristics of small-scale industries-Types of SSI-Role of SSI in Indian economy-problems of SSI	Dr.V.Balu, Entrepreneurship and Small Business Promotion
2	I	Steps in starting SSI-Laws for SSI – Finance management-Quality control-definition and advantages	
3	I		Dr.V.Balu, Entrepreneurship and Small Business Promotion
4	II	Soaps – definition- main fatty and non- fatty raw materials -Types of soaps-manufacture of laundry soap and bathing soap- mechanism of cleansing action of soap	
5	II	Composition, preparation and advantages of herbal soaps	B.N.Chakrabarty, Industrial Chemistry
6	II	Detergents-Classification of surfactive agents- manufacture of detergents. Shampoo-Composition and manufacture of egg and herbal shampoo	
7	III	Cosmetics –definition, kinds of cosmetics. Preparation of face powder, face cream and lipstick	A.N.Zamre, V.G.Ratolikar, A Textbook of Modern Applied Chemistry
8	III	Perfumes- definition, essential ingredients in perfumes	A.N.Zamre, V.G.Ratolikar, A Textbook of Modern Applied Chemistry
9	III	Classification of essential oils- preparation of perfumes	A.N.Zamre, V.G.Ratolikar, A Textbook of Modern Applied Chemistry

10	IV		Clarence Henry Eckles, Willes Barnes Combs and Harold Macy, Milk and Milk products
11		cream, Skim milk, Buttermilk	Clarence Henry Eckles, Willes Barnes Combs and Harold Macy, Milk and Milk products

12	IV	Yoghurt and cultured butter milk.	Clarence Henry Eckles, Willes Barnes Combs and Harold Macy, Milk and Milk products
13		Composition and manufacture of Safety matches, Agarbattis	B.K.Sharma, Industrial Chemistry
14		Composition and manufacture of Naphthalene balls, Wax candles	B.K.Sharma, Industrial Chemistry
15		Composition and manufacture of Shoe polish, Gum paste, Fountain pen ink, Chalk crayons, Plaster of Paris and Silicon Carbide crucibles	<u> </u>

Lesson plan for the year 2018 - 2019

Even Semester

PCCHF15 - GROUP THEORY AND QUANTUM CHEMISTRY

Week	Unit	Portions to be covered	Reference
1	III	Black body radiation	Quantum Chemistry By R. K. Prasad
2		Distribution of energy in the black body radiation	Quantum Chemistry By R. K. Prasad
3	III	Photoelectric effect, Bohr's quantum theory and subsequent developments	Quantum Chemistry By R. K. Prasad
4	III	Compton Effect	Fundamentals of Quantum Chemistry By R. Anantharaman

5	III	uantum mechanical postulates – operators, Hermitian property	Quantum Chemistry By R. K. Prasad
6	III	Particle in a box model (one and two dimensional cases)	Quantum Chemistry By D. A. Mcquarrie
7	III	Particle in a box model (three dimensional case)	Quantum Chemistry By D. A. Mcquarrie
8	III	Schrodinger equation for hydrogen atom and He atom, Origin of quantum numbers and their significance	-
9	IV	One dimensional harmonic oscillator	Quantum Chemistry By R. K. Prasad
10	IV	Normalization and the characteristics of the Eigen functions of a harmonic oscillator	Quantum Chemistry By D. A. Mcquarrie
11	IV	The recursion formula for the Hermite polynomials	Quantum Chemistry By D. A. Mcquarrie
12	IV	Selection rules of the harmonic oscillator	Quantum Chemistry By R. K. Prasad
13	IV	Space quantization of electronic orbitals	Quantum Chemistry By D. A. Mcquarrie
14	IV	The rigid rotor	Quantum Chemistry By D. A. Mcquarrie
15	IV	Particle in a ring	Quantum Chemistry By R. K. Prasad

Lesson plan for the year 2018 - 2019

PECHG15 – ORGANOMETALLIC AND BIOINORGANIC CHEMISTRY

Week	Unit	Portions to be covered	Reference
1	III	Addition reactions - 1,2 addition to double bonds	Inorganic Chemistry By J. Huheey and Organometallic chemistry of transition metals By Robert H. Crabtree
2	III	Carbonylation	Inorganic Chemistry By J. Huheey and Organometallic chemistry of transition metals By Robert H. Crabtree
3	III	Decarbonylation	Inorganic Chemistry By J. Huheey and Organometallic chemistry of transition metals By Robert H. Crabtree
4	III	Oxidative addition reactions	Inorganic Chemistry By J. Huheey and Organometallic chemistry of transition metals By Robert H. Crabtree
5	III	Reductive elimination reactions	Inorganic Chemistry By J. Huheey and Organometallic chemistry of transition metals By Robert H. Crabtree
6	III	Substitution reactions of octahedral complexes and their mechanisms	Selected Topics in Inorganic Chemistry By Wahid U. Malik, G. D. Tuli, R. D. Madan
7	III	Insertion reaction	Advanced Inorganic Chemistry By F. A. Cotton and G. Wilkinson and Organometallic chemistry of transition metals By Robert H. Crabtree
8	III		Advanced Inorganic Chemistry By F. A. Cotton and G. Wilkinson and Organometallic chemistry of transition metals By Robert H. Crabtree
9	III	Fluxional isomerism - definition, examples and mechanism	Inorganic Chemistry By M. C. Shriver, P. W. Atkins, C. H. Langford

10	IV	Hydrogenation of olefins (Wilkinson's catalyst), modification of the original catalyst	Advanced Inorganic Chemistry By F. A. Cotton and G. Wilkinson, Inorganic Chemistry By J. Huheey
11	IV	Hydroformylation of olefins using cobalt and rhodium catalyst (oxo process)	Advanced Inorganic Chemistry By F. A. Cotton and G. Wilkinson, Inorganic Chemistry By J. Huheey
12	IV	Oxidation of olefins to aldehydes and ketones (Wacker process)	Advanced Inorganic Chemistry By F. A. Cotton and G. Wilkinson, Inorganic Chemistry By J. Huheey
13	IV	Cyclo oligomerisation of acetylene using Nickel catalyst (Reppe's catalyst)	Advanced Inorganic Chemistry By F. A. Cotton and G. Wilkinson, Inorganic Chemistry By J. Huheey
14	IV	Olefin isomerization and its mechanism	Inorganic Chemistry By M. C. Shriver, P. W. Atkins, C. H. Langford
15	IV	Olefin metathesis and Polymer bound catalyst	Inorganic Chemistry By M. C. Shriver, P. W. Atkins, C. H. Langford

Lesson plan for the year 2018 - 2019

UACHB16-ALLIED CHEMISTRY II

Week	Unit	Portions to be covered	Reference
1		Co-ordination chemistry – definition of the terms - ligands, chelate, chelation	Modern Inorganic Chemistry By R.D.Madan
2		Nomenclature of mononuclear complexes	Modern Inorganic Chemistry By R.D.Madan
3	I	Werner's theory	Modern Inorganic Chemistry By R.D.Madan

4	I	Pauling theory	Modern Inorganic Chemistry By R.D.Madan
5	I	Chemistry of EDTA	Modern Inorganic Chemistry By R.D.Madan
6	I	Chemistry of haemoglobin and chlorophyll	Modern Inorganic Chemistry By R.D.Madan
7	II	Stereochemistry	Modern Inorganic Chemistry By R.D.Madan
8	II	Elements of symmetry	Modern Inorganic Chemistry By R.D.Madan
9	II	R- S notation (one asymmetric carbon atom), E-Z nomenclature	Advanced Organic Chemistry By B.S.Bahl and ArunBahl
10	II	Isomerism of lactic acid and tartaric acid, Racemisation and resolution	Advanced Organic Chemistry By B.S.Bahl and ArunBahl
11	Ш	Geometrical isomerism of maleic and fumaric acids	Advanced Organic Chemistry By B.S.Bahl and ArunBahl
12	II	Keto-enol tautomerism	Advanced Organic Chemistry By B.S.Bahl and ArunBahl
13	V	Medicinal chemistry - definition and one example each for analgesics, antipyretics, antibiotics	A Textbook of Pharmaceutical Chemistry By Jayashree Ghosh
14	V	Definition and one example each for antiseptics, tranquilizers, sedatives and hypnotics	A Textbook of Pharmaceutical Chemistry By Jayashree Ghosh
15		Local anesthetics and general anesthetics	A Textbook of Pharmaceutical Chemistry By Jayashree Ghosh

Lesson plan for the year 2016 - 2017

USCHC516 - SMALL SCALE CHEMISTRY

Week	Unit	Portions to be covered	Reference
1	I	Objectives and characteristics of small-scale industries-Types of SSI-Role of SSI in Indian economy-problems of SSI	Dr.V.Balu, Entrepreneurship and Small Business Promotion
2	I	Steps in starting SSI-Laws for SSI – Finance management-Quality control-definition and advantages	
3	I	Marketing and branding- Advertising-definition, objectives, advertising media.	-Dr.V.Balu, Entrepreneurship and Small Business Promotion
4	II	Soaps — definition- main fatty and non- fatty raw materials -Types of soaps-manufacture of laundry soap and bathing soap- mechanism of cleansing action of soap	f
5	II	Composition, preparation and advantages of herbal soaps	B.N.Chakrabarty, Industrial Chemistry
6	II	Detergents-Classification of surfactive agents- manufacture of detergents. Shampoo-Composition and manufacture of egg and herbal shampoo	
7	III	Cosmetics –definition, kinds of cosmetics. Preparation of face powder, face cream and lipstick	A.N.Zamre, V.G.Ratolikar, A Textbook of Modern Applied Chemistry
8	III	Perfumes- definition, essential ingredients in perfumes	A.N.Zamre, V.G.Ratolikar, A Textbook of Modern Applied Chemistry
9	III	classification of essential oils- preparation of perfumes	A.N.Zamre, V.G.Ratolikar, A Textbook of Modern Applied Chemistry

10	IV		Clarence Henry Eckles, Willes Barnes Combs and Harold Macy, Milk and Milk products
11		cream, Skim milk, Buttermilk	Clarence Henry Eckles, Willes Barnes Combs and Harold Macy, Milk and Milk products

12	IV	Yoghurt and cultured butter milk.	Clarence Henry Eckles, Willes Barnes Combs and Harold Macy, Milk and Milk products
13	V	Composition and manufacture of Safety matches, Agarbattis	B.K.Sharma, Industrial Chemistry
14		Composition and manufacture of Naphthalene balls, Wax candles	B.K.Sharma, Industrial Chemistry
15	V	Composition and manufacture of Shoe polish, Gum paste, Fountain pen ink, Chalk crayons, Plaster of Paris and Silicon Carbide crucibles	=